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Abstract—Models of computational creativity promise to pro-
vide insight into the nature of human creative work and
innovation. Intrinsically motivated, automated, creative agents
present a potential avenue for the exploration of creativity in the
arts, and in music in particular. A novel reinforcement learning
agent designed to improvise music in a self-motivated fashion is
described, formulated to prove the capabilities of an artificially
creative musical system. The prototype employs unsupervised
adaptive resonance theory algorithms to model theories of hu-
man perception, cognition, and creativity. While the generated
results are constrained for initial evaluation further extensions
suggest the potential to create meaningful, aesthetically valuable
compositions.

I. INTRODUCTION

The formulation of a creative, automatic musical composer,
improviser, or companion is a current topic [1] with the
potential to provide significant insight into creativity, inspi-
ration, and invention. Machine learning applications, typically
formulated around theories of biological brain function, seek
to understand observed phenomena through pattern abstraction
and reduction. Ideally these artificially intelligent systems
produce useful conceptual models of the generative processes
underlying the observed data such that the system can respond
to new stimuli in a meaningful way. Yet, machine learning
algorithms struggle to assess the external significance of
new material or concepts on their own, and require careful
formulation (by the designers) to produce significant results.
Thus, these systems have no inherent sense of how original
or valuable their creations are, especially in relation to the
external, human world.

If an automated agent can be given a self-applicable, generic
metric for the creativity of its actions it could evaluate its
own ideas or discoveries in a useful fashion. Such a system
could then produce results with a greater chance of being
meaningful to an outside observer, rather than wandering
randomly through its prescribed data or concept space. At the
very least these automatically originated ideas would be more
efficient and have internal value as they serve to map out the
agents conceptual domain.

Reinforcement learning, a specialized machine learning
model that enables an agent to explore, discover, and explain
its own environment, presents possibilities in this direction.
The typical reinforcement learner (RL) attempts to optimize its

behavior towards predefined, externally determined conditions
(such as successfully navigating a maze). However a RL can
be adapted to model computational creativity [2] by providing
the agent with an internal measure of novelty, allowing an
artificial agent to actively create and/or discover patterns which
have personal (for the agent) value [3], [4]. This intrinsically-
motivated RL is able to evaluate its discoveries based on a
sense of novelty or surprise, encouraging itself to identify new
patterns and new algorithms that enable a better mapping (i.e.
understanding) of its environment. Ideally the agent is able to
further identify culturally or historically meaningful concepts,
given sufficient background and context.

After a brief discussion of computational creativity, we
present a novel RL design and prototype system created to
improvise music alone or in an ensemble. Employing unsuper-
vised machine learning algorithms, this RL intentionally mod-
els human musical creativity and inspiration at a fundamental
level and is able to operate in live, performance settings.

II. COMPUTATIONAL CREATIVITY

Modeling creative processes in a computational system is
inherently problematic. Notions of creativity seem to be intrin-
sically tied to human agency and determining the success of an
automated system in an objective fashion may be futile. Boden
[3] presents a useful dichotomy in framing the subjective
nature of creativity: that of historically valuable innovation
(H-creativity) versus personally or psychologically meaningful
discovery (P-creativity). H-creative ideas have value to a larger
community and may be truly original formulations, occurring
for the first time in recorded history (such as the formidable
works of the western master composers, Bach, Mozart, etc.).
On the other hand, P-creative innovations are only required to
have personal significance, i.e. they are novel for the individual
only (which would include any musical creation which its
author finds compelling). Certainly P-creative ideas may also
be H-creative, but the later requires acknowledgement from
a wider community, potentially all of humanity. Additionally
there must be a continuum of H-creative value, from Nobel
prize winning discoveries to a musical composition that is con-
sidered innovative within a small community of practitioners.

Creativity is a process of formulating new concepts that
either combine or extend existing ideas. Semioticians argue



Fig. 1. Associative map.

that all human thought is built through associative maps,
where the knowledge contained in any one idea is defined by
its relative position (association) to every other idea. Figure
1 depicts such a map, in which ideas A, B, and C are
related by their connections in the idea space. Combinatorial
creativity is then understood as the creation of a new node
in the associative map that lies between two known nodes,
combining some elements of each to derive a third. Consider
if node C in figure 1 were initially absent leaving only a
single conceptual path between nodes A and B. Next, C
is created, providing a new path relating A and B in an
original way, for this map. The creation of C, if limited to
the thinking of an individual, would be deemed P-creative as
it is novel and changes the understanding of the individual in
question. However if the map represents the collective thinking
of a larger community it could be construed as H-creative,
modifying the conceptualization of a field of thought.

A more transformative form of creativity is the discovery
of new concepts that exist outside the bounds of the known
map and may result in a reformulation of some or all of the
map (called exploratory creativity [3]). These types of dis-
coveries typically have a significant impact for the individual
or community within which they are understood, such as the
movement to serial tonality and the adoption of stochastic
processes in music in the last century. These shifts in thinking
transform the previously accepted idea spaces in radical ways,
just as the recognition of a third dimension (extending up
from the page) would suddenly transform figure 1 into a
dramatically different associative map.

When evaluating acts of creativity, or computationally cre-
ative systems, one or all of the following four elements must
be satisfied [from [4], originally describing human creativity
in problem solving]:

1) The product of the thinking (system) has novelty and
value (either P-creative or H-creative).

2) The thinking is unconventional, in the sense that it
requires modification or rejection of previously-accepted
ideas.

3) The thinking requires high motivation and persistence.
4) The problem-area is vague, so that part of the thinking

is to formulate the problem itself.
The nature of the novelty of the product (element 1) may

be deemed H-creative through some form of Turing test with
human subjects, but P-creativity may be argued through prov-
ing element 2 (i.e. if the thinking requires the reformulation of
the agents concept map through the modification or rejection
of previously-accepted ideas, then it is deemed P-creative).
The value assigned to the thinking may be in relation to
another process (such as survival) or an external mandate
(such as passing a test). In a computational sense element 2
can be understood as change in an associative map, adding or
removing entries in a database that link to all other entries, thus
modifying the meaning of all known data. Additionally, self-
modifying systems, so long as the modification is novel, non-
formulaic and valuable, may be deemed creative according to
element 2.

High-motivation and persistence indicates the dedication of
the agent to the task of discovery, as any other approach
is likely to undervalue the innovation (due to ignorance or
apathy). This does not deny spontaneous inspiration, as this is
typically a result of sub-conscious work on a problem that is
highly valued by the individual (such as Archimedes’ famous
“Eureka!” discovery). Element 4 acknowledges that creativity
often appears in poorly defined areas of thought and research,
where simply discovering the challenges and mapping the
problem domain are significant contributions.

As long as working definitions of creativity (such as that
proposed by [4], above) do not arbitrarily require human
agency it is possible to consider automated creativity. Yet,
is the presence of creativity a viable aesthetic measure?
Conclusively answering such a challenge is likely infeasible,
due to the subjective nature of aesthetics and the individual
valuation of creative products. Yet conversely, by considering
artistic products that are very low in creative content (i.e. they
are predictable, conventional, created in a cursory fashion,
and exist in a well defined area) it seems clear that a lack
of creativity is an aesthetic liability.

III. REINFORCEMENT LEARNING

Human creative agency is observable from birth and infant
cognitive development serves as a clear model for general
computationally creative, artificial agents. The intrinsically
motivated RL model [2] is formulated as an extension of hu-
man learning processes, extending the conventional stochastic
RL with internal metrics of agent creativity. While humans
readily learn from sensory stimuli and their environment,
avoiding heat, injury, hunger, and thirst, they take more
than a passive role in this process. Babies actively conduct
experiments of the nature “what sensory feedback do I get if
I move my eyes or my fingers . . . just like that?” [2] In this
way the individual is always seeking new effects that exhibit
“some yet unexplained but easily learnable regularity.” Stimuli
observed previously is quickly deemed boring, while entirely
new input is regarded as incomprehensible noise. Through this
gradual mapping of behaviors and patterns the learner grad-
ually acquires more and more complex behaviors, eventually



leading to the extreme abstractions (in humans) of academic
thought, scientific innovation, and aesthetic inspiration.

A simple algorithmic mechanism is proposed by [2] to ex-
plain this learning phenomena, which uses RL to maximize the
“internal joy” of the discovery of “novel patterns.” Patterns can
be understood as regularities in a dataset that can be abstracted
in some fashion and effectively reduced, in complexity or size,
as a result (i.e. data compression). Thus as new inputs are
observed and recorded the discovery of new patterns allows
the observed history to be recorded in smaller and smaller
memory spaces. When an agent discovers a regularity or a new
model that allows phenomena to be compressed, the pattern
is deemed temporarily interesting. This process can also be
described as the refinement of an associative map, where each
new pattern is a new node in the concept space.

The crucial elements of the intrinsically motivated RL
model are:

1) An adaptive world model, essentially a predictor or com-
pressor of the continually growing history of actions/
events/sensory-inputs, reflecting what is currently known
about how the world works,

2) A learning algorithm that continually improves the
model (detecting novel, initially surprising spatiotempo-
ral patterns that subsequently become known patterns),

3) Intrinsic rewards measuring the model’s improvements
(first derivative of the learning progress) due to the
learning algorithm (thus measuring the degree subjective
surprise or fun),

4) A separate reward optimizer or reinforcement learner,
which translates those rewards into action sequences or
behaviors expected to optimize future reward.

Building a musical RL requires 1) a model of music, a
predictor/compressor containing all the music heard by the
agent and containing everything that is “known” about music;
2) an algorithm that learns how music works (improves the
model in 1); 3) a reward measure of the model’s improvements
in (2); and 4) an agent that creates more music anticipating
maximal future reward. In other words, (1) is an application
specific analysis of all the music presented to the agent and
(2) is the set of working theories and concepts that explain
these analyses.

To implement 1) and 2) we employ spatial feature en-
coding [5] and Adaptive Resonance Theory (ART) [6], an
unsupervised machine learning model mimicking elements of
human cognition and perception [7]. Element 3) is understood
as a measure of the relative entropy between the ARTs
prior and posterior states, diverging from conventional RL
implementations which typically employ a random exploration
model. Our curious exploration model [2] ensures that the
music is always internally interesting and valuable (satisfying
P-creative requirements). Finally, 4) is implemented as a
comprehensive predictor that anticipates the intrinsic reward
measure for every potential stimuli and acts to maximize this
reward.

IV. DISCUSSION

The ART employed in our RL is a generic fuzzy ART
implementation [8], providing the capability of identifying
significant patterns in a series of feature vectors and adaptively
encoding them into a neural network. In order to model the
Wundt curve of the agent (i.e. the spectrum between boredom
and confusion) we take the amount of change in the ART
network (the residual, r in equation 1) as a measure of novelty.
Thus new inputs that produce more change in the system
(both in terms of changing the weights of network nodes as
well as involving new nodes) move towards the chaotic end
of the continuum. Conversely, inputs that produce no change
are deemed boring. Thus the agent’s intrinsic reward (i) is a
function of the change in the size (e) of the network (relative
entropy, or how many new bits of data are required to store the
network) modified by the amount of change seen in the node’s
weights. The Wundt curve is modeled by inverting the relative
entropy such that a balance is found between modifying the
weights of existing nodes and creating new categories (i.e. new
nodes), where a middle ground is deemed to indicate “easily
learnable” [2].

i =
ret
et−1

(1)

Additionally, the intrinsic value of a given input is modified
by the resonance (a measure of proximity between the input
vector and each encoded category, R in equation 2) from each
node in the network. In this way new inputs (new ideas) that
fall in close proximity to known categories are rewarded more
(considered more understandable) and outliers are rewarded
less (more confusing). Finally, the amount of resonance a
node produces decays over the lifetime of the node (becomes
more boring), discouraging the agent from remaining in the
highest density regions of its concept space. Thus, the intrinsic
reward increases with residual change in the nodes’ weights
and the input’s proximity to young, known categories, while
it decreases with the growth of the network (relative entropy).
This can be understood as an affinity for combinatorially
creative ideas or changes to known ideas, while also enabling
extensions to the concept space.

i =
ret
et−1

|R| (2)

The exploration of the RL is modeled as a simple hypothesis
evaluation, considering each possible next input and seeking
the maximal resulting intrinsic reward (i). This approach is
feasible in this limited domain, allowing the agent to look at
pitches within a two octave range of the previously observed
note. Duration, rhythm, dynamics, articulation and timbrel
representations are not currently considered by the system.
Thus at each decision point the agent need only evaluate at
most 48 options, consider the reward resulting from each, and
announce the choice of the maximally rewarding pitch.

The environment the RL works within is defined by the
feature space it is presented with. We employ a feature vector
of over one hundred elements derived from the pitch sequence



(including pitch, pitch class, interval, interval class, change in
interval, interval sign, register, average interval, minimum and
maximum pitch over a given period, and direction). Due to
the curiosity of the agent all of the available feature space
will eventually (theoretically) be explored, producing every
possible pitch sequence regardless of external aesthetic value.
Human exploration is guided by many external factors (such as
musical training, history, cultural conditions, etc.) which this
agent lacks. Thus guiding the RL to make H-creative choices
seems to be a function of extensive exposure (playing the
corpus of recorded music for its evaluation) or the imposition
of extrinsic reward measures (i.e. composing and constraining
the feature space within which the agent may work), taking
the place of a strict teacher. The latter seems like the more
immediately viable solution but the former perhaps more true
to human experience.

A. Limitations

As previously noted, this RL uses a highly restricted per-
ceptual model that excludes many defining characteristics of
music. As a result, the expressive space of this agent is very
limited. Yet, given these constraints the material generated by
the system exhibits novel developments, on a local scale. Exact
repetitions are rarely seen but the musical texture is highly
related, in pitch selection and interval patterns [9]. While the
music can be interesting in small sections it clearly lacks any
sense of macro direction, form, structure, or playing with a
listener’s expectations. This follows logically from the model
set forth above, where the agent makes local choices, looking
one note ahead to find a novel pattern.

Informing the RL’s sense of musical direction may be
accomplished with several different approaches. First, a hi-
erarchical system of RL algorithms (as suggested by [7] and
shown in [9]) would provide patterns and the same curious
exploration at various levels, where each layer observes and
guides the layer below. Thus the lowest layer (described
previously) would make pitch choices, the next layer would
make motivic choices, the next at a phrase level, etc. Each RL
layer would watch the ART classifications of the lower layer
and calculate intrinsic novelty rewards.

At the moment the feature encoding model treats all notes
equally, regardless of emphasis in the musical texture. Human
identification of melodic patterns is strongly informed by
accentuation [10] and an appropriately analogous model may
provide a significant improvement in the system’s generation.
Musical accents can be understood as an exaggeration or
offset in a particular dimension, such as dynamics, register,
rhythmic duration, metric placement, or contour (peaks and
valleys, and approaching by a leap versus scalar motion).
This extension may also lead to a ready incorporation of the
additional musical elements that are currently being excluded
from the RL’s awareness (dynamics, rhythm, etc.).

Another approach is to develop a model of musical ex-
pectations that could parallel a human listener’s experience.
Knowledge of the operating style as well as general psycho-
logical principles inform a listener’s expectations of how a

musical work will unfold and the meeting or denying of these
expectations is a proven informer of emotional experience
[11]. Potentially, such a model could be developed for the
RL to use, allowing the agent to formulate patterns to create
musical direction that relate to a sense of expectation. Then the
curious, novel exploration could intentionally fulfill or deny
these expectations, and do so in the creative fashion argued
thus far.

V. CONCLUSION

The RL design presented here suggests the potential for
increased intelligence and creativity in automated music com-
position and improvisation. This in turn presents exciting
possibilities for interactive work in which both the com-
puter and the human agents are listening in a meaningful
way and fundamentally changing in response to one another.
However, the model employed betrays many limitations that
may be overcome by a more general, creative RL model [2].
Functionally, the current design cannot discover algorithmic
compression schemes, limiting its sense of novelty to feature
pattern relationships, and its domain of exploration is highly
constrained. Future work seeks to reveal further models and
algorithms that can give the RL agent a way to produce
historically meaningful music that can have value to a larger
human audience.
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