
From Music to Visuals – and Back
2D Fourier Transform applied on Music Piano Roll Plots

Reinhold Behringer

School of Computing and Creative Technology

Leeds Metropolitan University

Leeds, United Kingdom

r.behringer@leedsmet.ac.uk

Abstract—When a 2D Fourier Transform is applied to piano roll

plots which are often used in sequencer software, the resulting 2D

graphic is a novel music visualization which reveals internal

musical structure. This visualization converts the set of musical

notes from the notation display in the piano roll plot to a display

which shows structure over time and spectrum within a set

musical time period. The transformation is reversible, which

means that it also can be used as a novel interface for editing

music. The concept of this visualization is demonstrated by

software which was written for using MIDI files and creating the

visualization with the Fast Fourier Transform (FFT) algorithm.

This software demonstrates the live real-time display of this

visualization in replay of MIDI files or by music input through a

connected MIDI keyboard. The resulting display is independent

of pitch transformation or tempo. This visualization approach

can be used for musicology studies, for music fingerprinting,

comparing composition styles, and for a new creative composition

method.

Keywords-component; MIDI; music; visualisation; FFT; 2D

Fourier Transform;

I. INTRODUCTION

One of the interesting challenges in the creative realm is to
explore the relationship between music and visuals. There have
been many approaches for “transforming” music into 2-
dimensional (2D) visuals (images, videos), and while they
started out with manual transformations (e.g. [1]), there are
now many approaches for automatic transformation (e.g. [2]).
There are fewer approaches for the reverse transformation
(from visuals to music), mostly involving sonification rather
than outputting music (e.g. [3]). Also many of the prevalent
visualization tools use sound rather than music as input (e.g.
media players), and therefore, such visualizations are
influenced by instrument timbre and human performance in
addition to the music itself. A visualization which would solely
take into account the abstract music notation as its input would
provide insight into the general character of music structures
rather than of a particular music recording.

The Fourier Transformation [4] is a tool which detects
periodicity in signals. It is of great use in analyzing audio and
sound, as it provides the frequency spectrum of a sound during
a short period (typically 100ms). If a set of these spectra is
plotted vertically (low frequencies at bottom, high at top) over
a horizontal time line, one obtains a 2D spectrogram. Such a

spectrogram shows the frequencies (notes) and harmonics over
time, equivalent to a piano roll plot used in computer music
sequencer software, but it does not show or encode higher-level
internal musical structure and longer-term periodicity.

A Fourier Transformation (FT) in general reveals
periodicities in signals, but can also be used to transform a
general non-periodic signal into its Fourier components. This
leads to the idea that an FT approach also could be applied to
musical structure itself, in which case a longer time period
would have to be covered than with the FT of a typical
spectrum computation. The input signal for such a longer time-
window (1-dimensional) FT could be the audio signal itself.
Such an FT spectrum would show the classical FT spectrum for
high frequency components (which are equivalent to music
notes themselves), but is also expected to show low-frequency
structure (< 10 Hz) of the change of such notes. The
computational requirements for this are relatively high, due to
the long time window that would need to be covered (>0.5 sec)
for the computation of the FT. A much simpler approach would
be to solely consider musical events over time as an input for
this “slow” FT, instead of computing the full frequency spectra.
This leads to the idea of using 2D piano roll plots as input: they
are basically 2D spectrograms, showing the distribution of
musical notes over time within a set time window. If a 2D FT
algorithm is applied onto this plot, then the resulting 2D FT
would show features related to both the distribution of notes
over time and over pitch. In effect, this is a 2D FT applied on a
time-plot of 1D FTs (the spectra).

This approach of computing an FT of (the logarithm of) an
FT has been already developed in the 1960s [5], introducing
the terms alanysis (sic), cepstrum (sic), and quefrency (sic).
This technique has been used in signal processing applications
such as speech recognition, but has not been applied to music.

We have begun an explorative research and development to
investigate the use of this 2D FT in visualizing music. Hereby
we are limiting our efforts to the input of abstract music
notation such as MIDI files instead of audio – this avoids the
need to also compute the spectrograms. We have begun to
develop software for automatic real-time computation of the
2D FT on piano roll plots, obtained from MIDI files and from
live play through a keyboard. In this paper we describe our
first experiments with the 2D FT, show some early results, and
present an outlook on the possible use of this approach.

mailto:r.behringer@leedsmet.ac.uk

II. THE FOURIER TRANSFORM (FT)

A. Theoretical Background

The basic equation for the one-dimensional discrete FT,
using complex notation, is given in equation (1). Herby, xn is
the discretely sampled wave input. The equations are written
here in the complex form.

 (1)

For the 2D discrete FT, the summation has to be performed

across the two axis of the input array. 2D FT is commonly

used in image processing, for image analysis, compression,

and filtering. The equation for computing the resulting FT on

an array with points xm,n is given in equation (2).

 (2)

While the input of the FT can be just an array of real
numbers with zero imaginary part, the resulting FT is in
general an array of complex numbers, each of which also can
be shown as an array with magnitude and phase. For
visualisation, usually the magnitude is the meaningful variable,
but in order to keep the proper time line relationship of the
input features, the phase is also essential.

A fast algorithm for computing FTs is the Fast Fourier
Transform (FFT) algorithm developed in the 1960s [6]. It
reduces the N2 complexity for the computation of a 2D FT to
NlogN complexity. This algorithm is used in many
applications where spectra are computed, and we use it in our
software for computing the 2D FT plot of the piano roll plots.

B. Interpretation of 2D FT on Piano Plot Rolls

When applied to a 2D piano roll plot, the input of the 2D
FT is the quantized grid (time, pitch) of the roll plot image.
Where in a conventional FT applied to the sound wave, the
input values are the values of the sampled signal, and in the
case of 2D FT the input values are the loudness values of the
notes in the quantized 2D grid. The two axes of the resulting
2D FT plot have the following meaning: the horizontal axis
represents the rhythmic structure of the music, given in 1/time
units as “low frequencies”. Small values of the horizontal axis
represent “long” notes and/or pauses, indicating low degree of
change in the timeline structure of the music, whereas a higher
value of the horizontal axis describes a faster changing pace of
the notes. The maximum value of the horizontal axes describes
the highest possible time resolution of the input plot. The
vertical axis of the 2D FT plot refers to the chord structure of
the music and the music intervals. A high value on this axis
means that note intervals are small and possibly densely
clustered. Low values on this axis mean larger intervals. In our
approach for the piano roll plot, the input resolution of the
frequency axis is one semitone, but this can also be generalized
and extended to microtones, simply by setting a finer
quantisation of the vertical axis of the piano roll plot.

III. EXPERIMENTS WITH 2D FT ON PIANO PLOT ROLLS

Before our own software development process began, we
did a few experiments, using existing software for computing

the 2D FT on images. For this, an existing software code [7]

was chosen, because it provided the necessary capabilities and

the code base for our own customization.

In order to explore the feasibility of using the 2D FT

approach for music visualization, a few initial experiments

were conducted: a music rendition of Gustav Mahler’s

“Urlicht” (digitized by the author from score [8]) was loaded

into the sequencer software Cakewalk® Sonar (v.8.52), and a

screenshot of an excerpt of the piano roll plot was produced

(see Figure 1), with distracting features (guide lines) being

removed from the original input plot. The color of the note
bars indicates different instruments, the intensity (darkness) of

the color signifies note velocity (a measure of note attack,

which can here be taken for note loudness/intensity).

Figure 1.Screenshot of sequencer piano roll plot of Gustav Mahler’s “Urlicht”.

The 2D FT was then computed on this image by the FFT
algorithm, and the magnitude plot was displayed (see Figure 2,
left).

Figure 2. Left: FT magnitude of piano roll plot of Gustav Mahler’s “Urlicht”.

Right: the same plot with logarithmic scaling of intensities.

In order to see more directly the point symmetry around the
origin (0;0), the 2D FT plot is shown shifted by ½ of its
dimensions, so that the origin appears in the image center. This
2D FT plot, normalized to intensity values between 0 and 255,
shows several clearly visible structures around the central
vertical axis, which indicate the use of certain intervals.
Besides these main features, there are also more features which
are more clearly visible in a logarithmic plot of the 2D FT
intensities (see Figure 2, right).

 In addition to magnitude, the FT also produces a phase plot
(see Figure 3). This phase determines the spatial relationship of
each point in the image. It appears to show no discernible
structure, but it is essential for the inversion of the
transformation: together with phase and magnitude of the FT
plots, the original image (piano roll plot) can be reproduced
identically without any visual loss of visual features.

Figure 3. Phase plot of FT of Mahler's “Urlicht”.

Inverting the FT re-creates the original image of the piano
roll plot. This property of being invertible is used in image
processing applications where editing operations can be applied
in the 2D FT domain. For the application in the music realm, it
is noteworthy that the 2D FT contains all music features from
the original input. This makes it possible that the 2D FT plane
can be used for editing and modifying its data – which then can
lead to new music results when being inverted back.

Problematic is the fact that the phase plot needs to be
preserved in order to re-compute the correct original input. In
an experiment, we set the imaginary parts of the complex 2D
FT plot to zero and only kept the real part of the FT, before
then inverting it back. The result was that the inverted plot
showed the original piano roll plot, overlaid by a spatially
reflected plot version (Figure 4, left). When removing the
phase by assigning the full magnitude to the real part and
setting the imaginary part to 0, the resulting inversion of the 2D
FT shows no resemblance to the original piano roll plot (see
Figure 4, right). Therefore, the phase needs to be included
properly.

Figure 4. Left: inverse 2D FT with imaginary part set to zero. Right: inverse

2D FT with phase set to zero.

These initial experiments with the application of the 2D FT

directly on images of the piano roll plots have been done with

color images. In the original sequencer, the different colors of

the note bars indicate different instruments, of which there are

33 in individual tracks. The 2D FT algorithm, however, only

separates the three basic colors (red, green, blue) in the RGB

encoded images. Therefore, the instruments are not treated

individually but “mixed” together, and as a result there is no

clear color distinction in the 2D FT plots. In principle, the 2D

FT would need to be applied to each instrument separately in

order to properly reflect all the features contributed by each
instrument. This can be achieved if a different input data

structure would be used: instead of an RGB image, an array

with a set of subfields should be employed, one field for each

instrument. Despite these limitations, these initial experiments

with the image-based FT were encouraging to further

exploration of this 2D FT approach in music.

IV. THE CUSTOM SOFTWARE FOR 2D FT

Based on the existing FFT implementation [7], we wrote
further software which would allow to directly create a piano
roll plot and create the 2D FT in real-time continuously. The
piano roll plot would only provide the essential visual elements
and would enable the creation of a freely configurable and
extendible format for storing the data. The selected
development platform is Microsoft’s Visual Studio®, the code
is written in C# and uses .NET functionality. The MIDI
functionality is embedded by using Leslie Sanford’s C# MIDI
toolkit [9], which provides functionality for reading and
playing MIDI sequences and for connecting MIDI devices. The
software allows loading a MIDI file, which can then be played
through the built-in MS software synthesizer (“Microsoft GS
Wavetable Synth”.). Furthermore, the software allows manual
live play through an external keyboard.

For creating the piano roll plot, an internal 128x128 array
of INT values stores the piano roll plot. The vertical axes is
directly the pitch value of the MIDI note (with 64 = C). The
values in each array element are the MIDI velocity values. At a
later stage of the development, these values will be computed
from volume (MIDI #7) and expression (MIDI #11) values,
which more properly reflect the changing loudness of a MIDI
sound. In the current software version, the decision was made
to interpret the time axis as “musical time”, that is in relation to
musical measures and tempo. This allows a tempo-invariant
computation of the FT. The user can choose what the overall
range of the visible piano roll plot should be: 1 bar, 2 bars, or 4
bars. The tempo determines the speed with which the piano roll
is scrolled. It is set from the MIDI file, but also can be scaled.
New note events are added into the array at the right end of the
plot, and with the scrolling of the roll plot to the left, parts on
the left end are removed. This occurs at every new note event
and at pre-determined times triggered by a timer, which can be
set to every 1/4, 1/8, 1/16, or 1/32 note. This trigger also causes
the FT to be computed on the current state of the piano roll
plot.

The graphics of the piano roll plot and the magnitude of the
2D FT are shown enlarged as 256x256 graphics. For greater
detail, they can be “zoomed” in at the centre by a factor of 2.
Furthermore, the FT can be shown in shifted view with the
origin at the centre instead of the bottom left.

The user can also play live through either an on-screen
keyboard or an external MIDI (USB) keyboard. The tempo for
the plot creation can be set (default is 120 bpm), and a click is

played at each beat, so that the user can play in sync with the
beat.

V. SYSTEMATIC EXPERIMENTS

With our custom software, it is possible to study some of
the features of the 2D FT in more detail, by playing live on the
keyboard certain music input patterns. The following figures
are screenshots of the software and show both the piano roll
plot (left) and the 2D FT plot (right). Figure 5 shows the 2D FT
of a single note: multiple vertical lines. This is caused by the
step at the beginning of the note, equivalent to the multiple
Fourier components of a rectangular signal. These multiple
components disappear, once the step disappears and the note is
shown solid (Figure 6).

Figure 5. Beginning of single long note. The sudden jump of the volume

causes the multiple components in the 2D FT.

Figure 6. Single long note with indefinite duration causes straight vertical line

in center of 2D FT.

If the note is played in a rhythm, the line pattern in the 2D

FT indicates the rhythmic properties (Figure 7). This takes

also into account emphasis on individual notes.

Figure 7. Short note with quarter beat causes set of equidistant lines in 2D FT,

indicating a fixed rhythm.

Notes played at intervals cause a structure along the

vertical axis of the 2D FT (see Figure 8). Note here also the

alternating play of the notes, which results in the shifted

dashing of the vertical lines. Interesting is the 2D FT structure

in Figure 9, where a simple up-and-down-sweep causes a

complex structure.

Figure 8. Alternating tones every quarter, a fifth apart. This causes vertical

lines and shifted line segments in the 2D FT.

Figure 9. Up-and-down-sweep with regular note duration.

VI. CONCLUSIONS AND OUTLOOK

We believe that the 2D FT presented in this paper can be
used in music for various purposes: it provides a reversible way
of detecting features and structure in music, allowing new ways
of visualization and composition of music. Also, the 2D FT
provides a unique fingerprint of music, based on the music
alone (tempo and pitch invariant), and this is also suitable for
further musicological analysis. More work needs to be done in
creating intuitive tools for interacting with this 2D FT and
allowing to harness and comprehend all its features.

REFERENCES

[1] Oskar Fischinger, Oskar Fischinger Archive. www.oskarfischinger.org

[2] Stephen Malinowski, “The music animation machine”,

www.musanim.com, 2006.

[3] Peter B.L. Meijer, “The vOICe”, 2012, http://bit.ly/43xnsk

[4] Jean Baptiste Joseph Fourier, J.B.J., Théorie Analytique de la Chaleur,

Paris, 1822.

[5] B.P.Bogert, M.J.R.Healy, and John Wilder Tukey: “The Quefrency
Alanysis of Time Series for Echoes: Cepstrum, Pseudo Autocovariance,

Cross-Cepstrum and Saphe Cracking”. Proceedings of the Symposium
on Time Series Analysis (M. Rosenblatt, Ed) Chapter 15, 209-243. New

York: Wiley, 1963

[6] James W.Cooley and John W. Tukey, ”An algorithm for the machine
calculation of complex Fourier series,” Math. Comput. 19, 297-301,

1965.

[7] V.A.Bharadi, “2D FFT of an image in C#”. The CODE Project. 2009
http://bit.ly/yHGkVt

[8] Gustav Mahler. “Symphony No.2”. Philharmonia Scores, PH395

[9] Sanford, L. “C# MIDI Toolkit”. The CODE Project. 2007.

http://bit.ly/wI3tst

http://www.oskarfischinger.org/
http://www.musanim.com/
http://bit.ly/43xnsk
http://bit.ly/yHGkVt
http://bit.ly/wI3tst

