
New Ideas Psychol. Vol. 2 No. 2 pp. 137-168, 1984 0732-118X $3.00
Printed in Great Britain © 1984 Pergamon Press, Ltd.

ON THE COGNITIVE EFFECTS OF LEARNING

COMPUTER PROGRAMMING

ROY D. PEA and D. MIDIAN KURLAND
 Center for Children and Technology Bank Street College of Education 610 West

112th Street, New York, NY 10025, U.S.A.

Abstract—This paper critically examines current thinking about whether learning
computer programming promotes the development of general higher mental functions.
We show how the available evidence, and the underlying assumptions about the
process of learning to program fail to address this issue adequately. Our analysis is
based on a developmental cognitive science perspective on learning to program
incorporating developmental and cognitive science considerations of the mental
activities involved in programming. It highlights the importance for future research of
investigating students’ interactions with instructional and programming contexts,
developmental transformation of their programming skills, and their background
knowledge and reasoning abilities.

There are revolutionary changes afoot in education, in its contents as well as its methods.
Widespread computer access by schools is at the heart of these changes. Throughout the
world, but particularly in the U.S.A., educators are using computers for learning activities
across the curriculum, even designing their own software. But virtually all educators are as
anxious and uncertain about these changes and the directions to take as they are optimistic
about their ultimate effects. "Now that this admittedly powerful symbolic device is in our
schools," they ask. "what should we do with it?"

We believe that educators and social scientists are at an important watershed in
American education. Important new opportunities abound for research and development
work that can influence directly the quality of education. Hard questions are emerging
about the design of educational activities that integrate the computer with other media. The
volatile atmosphere of choices for schools (and parents), as new hardware and software
appear daily, calls for principles and knowledge that educators can use, derived from
systematic empirical studies, in laboratories and classrooms, of how children learn with
these new information technologies. We also need theoretical debates on the aims and
priorities for education in an information age. We believe that a developmental

We would like to acknowledge with thanks the Spencer Foundation and the National
Institute of Education Contract 400-83-0016) for supporting the research reported here,
and for providing the opportunity to write this essay. The opinions expressed do not
necessarily reflect the position or policy of these institutions and no official endorsement
should be inferred. Jan Hawkins. Karen Sheingold. Ben Shneiderman and a group of
anonymous reviewers provided very useful critical discussions of the data and issues
covered n this report. Requests for reprints should be sent to Roy Pea at the address given
above.

137

138 Roy Pea and D. Midian Kurland

approach to the understanding of information technologies will be required. one that
incorporates the new insights of cognitive science, and that will guide both research on.
and design of. computer-based learning environments. Such a discipline of developmental
cognitive science would merge theory and practice to dovetail the symbolic powers of
human thinking with those of the computer in the service of human development.

In this essay our goals are considerably more modest, but nonetheless a timely subtask
of the larger enterprise. Our aim is to examine two widespread beliefs about the mental
activities engaged by programming a computer and their expected cognitive and
educational benefits. The two beliefs are polar opposites and neither is acceptable.
Together, they express the two predominant tendencies in thinking about learning to
program today.

The first belief is linked to an atomistic, behaviorist tradition that views learning
narrowly. This is the traditional and deeply-en grained idea that learning is simply an
accumulation of relatively autonomous "facts". On this view, what one learns when
learning to program is the vocabulary of commands (primitives) and syntactic rules for
constructing acceptable arrangements of commands. This belief underlies most
programming instruction. Its other facet is that what one learns when learning
programming is just a programming language.

The contrasting belief, in part a reaction to the first belief, is that through learning to
program. children are learning much more than programming, far more than programming
-facts--!-It is said that children will acquire powerfully general higher cognitive skills such
as planning abilities, problem-solving heuristics, and reflectiveness on the revisionary
character of the problem solving process itself. This belief, although new in its application
to this domain, is an old idea in a new costume which has been worn often before. In its
common extreme form, it is based on an assumption about learning - that spontaneous
experience with a powerful symbolic system will have beneficial cognitive consequences,
especially for higher order cognitive skills. Similar arguments have been offered in
centuries past for mathematics, logic, writing systems, and Latin e.g. see Bruner, 1966;
Cole & Griffin, 1980; Goody, 1977; Olson, 1976; Ong, 1982; Vygotsky, 1978).

The intuitively plausible claims for the cognitive benefits of programming have
broadened in scope and in public attention. Although evidence does not support these
claims as yet, their presumed validity is nonetheless affecting important decisions in public
education, and leading to high expectations for outcomes of programming in the school
and home. In the current climate of uncritical optimism about the potential cognitive
benefits of learning to program, we run the risk of having naive "technoromantic" ideas
become entrenched in the school curriculum by affirmation, rather than by empirical
verification through a cyclical process of research and development. Already at the pre-
high school level, programming is taught primarily because of its assumed impact on
higher cognitive skills, not because proficiency in programming itself is an educational
goal. This assumption takes on added significance since several millions pre-college age
children in the U.S.A. are already

Learning computer programming 139

receiving instruction in computer programming each year, and France has recently made
programming compulsory in their precollege curriculum, on a par with mathematics and
native language studies.

With the rapid rise in the teaching of programming it has become critical for
decision-makers in education to understand how programming is learned, what may be the
cognitive outcomes of learning to program, what levels of programming skill may be
required to obtain different types of outcomes, and what the relationships are between the
cognitive constraints on learning to program and its cognitive consequences. Research
directly addressing these questions is only beginning.

Throughout our paper we will highlight major issues and fundamental
complexities for researchers in designing studies responsive to these critical
questions. We discuss these issues in terms of a hybrid developmental frame-
work, incorporating cognitive science and developmental psychology, and review relevant
research in cognitive science and its cognate disciplines. This synthesis recognizes the
inadequacies of either an extreme knowledge-building account of learning to program, or
the naive technoromanticism that postulates spontaneous higher order cognitive skills as
outcomes from programming experiences. Although claims about the spontaneous
cognitive impacts of programming have an intuitive appeal, we show them to be mitigated
by considerations of factors involved in learning and development. We also demonstrate
how, embodied in practice, the fact-learning approach to programming often leads to
incomplete programming skills. Cognitive studies of what expert programmers know, the
level of the student's programming skills, the goals and purposes of those learning to
program, the general difficulty of transferring "powerful ideas" across domains of
knowledge, all contribute to our rejection of these two views. Programming in the
classroom may fundamentally alter the ways in which learning and cognitive development
proceed. But we must examine whether such bold claims find, or are likely to find,
empirical support.

We have felt throughout our analysis of these issues that a developmental perspective
that incorporates the seminal work in the last decade of the interdisciplinary field of
cognitive science will illuminate our understanding- of the potentialities of information
technologies for advancing human cognition. Fundamental contributions to thinking about
and concretely establishing the educational roles of information technologies could be
gained from the synthesis of these two important theoretical traditions.

Developmental theorists such as Piaget and Inhelder (1969), Werner (1957) and
Vygotsky (1978) have provided accounts of developmental processes with profound
implications for the roles of technologies in education. On all these views, cognitive
development consists not of an accumulation of facts. but of a series of progressive
reorganizations of knowledge driven by the child's active engagements with physical and
social environments In these views, learning (i.e. the accumulation of new knowledge) is
important for driving the developmental process, but at the same time is mediated by the
current developmental capabilities of the learner.

In the field of cognitive science during the last decade, researchers in the

140 Roy Pea and D Midian Kurland

constituent disciplines of cognitive psychology, computer science, linguistics.
anthropology and philosophy have begun intensive collaborative research projects (e.g.
Gentner & Stevens, 1983; Greeno, Glaser & Newell, 1983
Norman. 1981). The combination of careful analysis of cognitive processes and the
techniques of computer simulation has led to important new insights into the nature of
mental represei6?problem solving processes, self knowledge, and cognitive change.
Cognitive science has revealed the enormous importance of extensive, highly structured
domain-specific knowledge and the difficulty of developing general purpose problem
solving strategies that cut across different knowledge domains. Also, within particular
domains, cognitive science research has been able to specify in great detail the naive
"mental mode1" held by novices, such as Aristotelian beliefs about objects in motion,
which are often very resistant to change through spontaneous world experience (Gentner &
Stevens, 1983).

Cognitive science shares with the older tradition of developmental psychology a concern
with how new learning must be integrated with prior knowledge, but it transcends earlier
work in analyzing problem solving and learning processes for specific knowledge domains,
and finds little role for general structural principles invoking "stages".

For a student interacting with a programming environment, for example, a
developmental perspective would indicate the importance of studying how these students'
current knowledge of the computer system is organized, how they regulate and monitor
their interactions with it, and how their knowledge and executive routines affect the ease or
pace of acquisition of abilities to use new programming constructs. Also, it would
investigate the students' exploration of the system, and the ways that they are able to
assimilate it to their current level of understanding and to appropriate it in terms of their
own purposes, including play and competition. Learning to use the programming language
may require successive developmental reorganizations not only of the students' naive
understanding of the language being learned, but also of the computer system as a whole.
Complex cognitive changes are unlikely to occur through either spontaneous exploration or
explicit instruction alone, since students must be engaged in the task in order to interpret
the new concepts. This perspective suggests that rather than arguing, as many currently are,
over global questions such as which computer language is "best" for children, we would do
better in asking: how can we organize learning experiences so that in the course of learning
to program students are confronted with new ideas and have opportunities to build them
into their own understanding of the computer system and computational concepts?

In complementary terms, cognitive science raises such important questions as: How can
common systematic misconceptions in particular domains of knowledge be diagnosed and
remediated through either informal or formal learning activities? For example, what does a
student specifically need to know in order to comprehend and use expert strategies in
designing a computer program? What component mental processes are engaged in
programming activities?

Learning computer programming 141

The synthesis of developmental cognitive science focuses on diagnosing the mental
models and mental processes that children as well as adult novices bring to understanding
computer programming, since these models and processes serve as the basis for
understanding transformations of their systems of knowledge as they learn. Beyond the
typically agenetic cognitive science, a developmental cognitive science would ask: How
are the various component mental processes involved in expert programming constructed
and reconfigured throughout ontogenesis, and accessed and organized during problem
solving
episodes? Through what processes of reorganization does an existing system of thought
become more highly developed? Through what learning activities in what kinds of
environments does the novice programmer develop into an expert? Developmental
cognitive science asks how the mind and its ways of knowing are shaped. not only by
biological constraints or physical objects, but by the available cultural interpretive systems
of social and educational interaction. As we shall see, the currently available research is
impoverishes n response to these questions. but current progress in understanding the
development of mathematical and scientific thinking (reviewed, for example, in Siegier,
1983) leads us to be optimistic about the prospects for comparable work on the psychology
of programming

The critique of the literature on learning to program that we present below has been
strongly influenced b' this developmental cognitive science perspective. We do not adopt
the usual computer programming perspective assuming that all programming students are
adults or have the same goals as mature learners. Instead, the perspective is geared to the
learning experiences and developmental transformations of the child or novice adult in
interactive environments. The kinds of preliminary questions that we ask from this
perspective in addressing the question: "What, are the cognitive effects of learning to
program?'' lead us to draw on studies from diverse fields that we see as relevant to a
developmental cognitive science of programming, and we have categorized them according
to the topics of ''What are the developmental roles of contexts in learning to program?'',
"What is skilled programming?''. ''What are the levels of programming skill
development?", and "What are the cognitive constraints on learning to program?''. First,
however, we will begin by examining the bold claims about the effects of learning to
program.

CLAIMS FOR COGNITIVE EFFECTS OF LEARNING TO PROGRAM

Current claims for the effects of learning programming upon thinking are best
exemplified in the writings of Papert and Feurzeig (e.g. Feurzeig. Papert. Bloom. Grant &
Solomon. 1969; Feurzeig. Horwitz & Nickerson. 1981: Goldstein & Papert. 1977; Papert.
1972a. 1972b, 1980: Papert, Watt, DiSessa & Weir, 1979) concerning the Logo
programming language, although such claims are not unique to Logo (cf. Minsky, 1970).

Early claims

Two key catalysts underlie beliefs that programming will discipline thinking.

142 Roy Pea and D. Midian Kurland

The first is from artificial intelligence, where constructing programs that model the
complexities of human cognition is viewed as a way of understanding that behavior. In
explicitly teaching the computer to do something, it is contended that you learn more about
your own thinking. By analogy (Papert 1972a) programming students would learn about
problem solving processes by the necessarily explicit nature of programming, as they
articulate assumptions and precisely specify steps to their problem solving approach. The
second influence is the widespread assimilation of constructivist epistemologies of
learning, most familiar through Piaget’s work. Papert (1972a, 1980) has been an
outspoken advocate of the Piagetian account of knowledge acquisition through self-guided
problem solving experiences, and has extensively influenced conceptions of the benefits of
learning programming. through 'a process that takes place without deliberate or organized
teaching'' Papert, 1980. p. 8.

Ross and Howe 1981. p. i3, have summarized Feurzeig et al's (1959 four claims for the
expected cognitive benefits of learning programming. Initially. most outcomes were
postulated for the development of mathematical thought:

1) that programming provides some justification for, and illustration of. formal
mathematical rigour (2 that programming encourages children to study mathematics
through exploratory activity: (3) that programming gives key insight into certain
mathematical concepts: and () that programming provides a context for problem solving,
and a language with which the pupil may describe his own problem solving.''

Papert 1972b argued for claims (2) to (4,i in noting that writing programs of Logo turtle
geometry is a 'new piece of mathematics with the property that it allows clear discussion
and simple models of heuristics [such as debugging] that are foggy and confusing for
beginners when presented in the context of more traditional elementary mathematics" (our
emphasis). He provides anecdotes of children ''spontaneously discovering" phenomena
such as the effects that varying numerical inputs to a procedure for drawing a spiral have
on the spiral's shape. He concludes that learning to make these "small discoveries" puts the
child ''closer to mathematics" than faultlessly learning new math concepts.

Recent Claims

We find expanded claims for the cognitive benefits of programming in a new
generation of theoretical writings. In Mindstorms, Papert (1980) discusses the pedagogy
surrounding Logo, and argues that cognitive benefits will emerge from taking "powerful
ideas" inherent in programming (such as recursion and variables, in ''mind-size bites'' e.g.
procedures). One of the more dramatic claims is that if children had the extensively
different experiences in thinking about mathematics that Logo allows: "I see no reason to
doubt that this difference could account for a gap of five years or more between the ages at
which conservation of number and combinatorial abilities are acquired" (p. 175). Paper, is
referring to extensively replicated findings of a large age gap between the early
conservation of number (near age 7) and later combinatorial abilities (e.g. constructing all
possible pairings of a set of different colored beads, near age l2.

Learning computer programming 143

Feurzeig et al. 1981 provide the most extensive set of cognitive outcomes expected
from learning to program They argue that 'the reaching of the set of concepts related to
programming can be used to provide a natural foundation :or the teaching of mathematics,
and indeed for the notions and art of logical and rigorous thinking n general.'' Learning to
program is expected to bring about seven fundamental changes in thought

(1) rigorous thinking, precise expression, recognized need to make assumptions
explicit (since computers run specific algorithms);

(2) understanding of general concepts such as formal procedure, variable, function,
and transformation since these are used in programming):

(3 greater facility with the art of "heuristics'', explicit approaches to problems useful for
solving problems in any domain, such as planning, finding a related problem, solving the
problem by decomposing it into parts, etc. since 'programming provides highly motivated
models for the principle heuristic concepts''

(4) the general idea that "debugging" of errors is a "constructive and plannable
activity" applicable to any kind of problem solving (since it is so integral to the interactive
nature of the task of getting programs to run as intended):

(5) the general idea that one can invent small procedures as building blocks for
gradually constructing solutions to large problems (since programs composed of
procedures are encouraged in programming);

6, generally enhanced "self-consciousness and literacy about the process of solving
problems'' (due to the practice of discussing the process of problem solving in
programming by means of the language of programming concepts):

(7) enhanced recognition for domains beyond programming that there is rarely a single
"best'' way to do something, but different ways that have comparative costs and benefits
with respect to specific goals (learning the distinction between ''process" and "product", as
in Werner, 1937).

Asking whether programming promotes the development of higher cognitive skills
raises two central issues in developmental cognitive science. First, is it reasonable to
expect transfer across knowledge domains? Even adult thinkers are notorious for their
difficulty in spontaneously recognizing connections between "problem isomorphs."
problems of identical logical structure but

• Hopes that learning the concepts and language that underlie programming will change
the way a learner thinks of non-programming problems recalls the strong formulation of
the Sapir Whorf hypothesis that available linguistic labels constrain available thoughts.
The strong form of this hypothesis has been extensively refuted e.g. Cromer, 1974): only a
weak version is consistent with evidence on language - thought relationships Available
labels in one's language may facilitate, but are neither necessary nor sufficient for
particular forms of thinking, or conceptual distinctions Categories of thought may provide
the foundation for linguistic categories, not only the reverse The same point applies to the
language of programming.

144 Roy Pea and D. Midian Kurland

different surface form (Gick & Holyoak, 1982; Hayes & Simon, 1977; Simon & Hayes,
1976), and in applying strategies for problem solution that they have developed into one
context to new problem forms. With problems of “near” transfer so acute, the possibility of
spontaneous transfer must be viewed cautiously. In later discussions, we provide a tentative
developmental model for thinking about relations between different types of transfer beyond
programming and different levels of programming skill.
 The second and related question is whether intellectual activity is guided by general
domain-independent problem solving skills or by a conjunction of idiosyncratic domain-
dependent problem solving skills (Goldstein & Papert, 1977; Newell, 1980; Simon, 1980).
An extensive literature on metamemory development indicated that the tasks used to
measure the functioning of “abstract thinking” are inextricably linked to the specific
problems used to assess metacognition (e.g. Brown, 1983a). And as Ross and Howe (1981)
note, “in most problem solving tasks, it is impossible to apply the supposed context-free
skills without initially having essentially domain-specific knowledge.” Within domains,
however, better performances by learners are commonly accompanied by reflection on the
control of their own mental activities (Brown, Bransford, Ferrara & Campione, 1983).

THE DEVELOPMENTAL ROLE OF CONTEXTS IN LEARNING TO PROGRAM

 For a developmentalist, there is a major problem pervading each of these
characterizations of the effects on higher thinking skills expected from learning to program.
Programming serves as a “black box,” an unanalyzed activity whose effects are presumed to
irradiate those exposed to it. But questions about the development of programming skills
require a breakdown of the skills into component abilities, and studies of how specific aspect
of programming skill are acquired. They require especially serious consideration of the
developmental roles played by the contexts interpenetrating the black box: the programming
environment, the instructional environment, and the relevant understandings and
performances of the learner.
 The question of the role of contexts in learning “programming” is complex, because
“programming” is not a unitary skill. Like reading, it is comprised of a large number of
abilities that interrelate with the organization of the learner’s knowledge base, memory and
processing capacities, repertoire of comprehension strategies, and general problem-solving
abilities such as comprehension monitoring, inferencing, and hypothesis generation. This
lesson has been etched in high relief through intensive efforts to develop artificial
intelligence systems that “understand” natural language text (e.g. Schank & Abelson, 1977;
Schank, 1982). Skilled reading also requires wide experience with different genres (e.g.
narrative, essays, poetry, debate) and with different goals of reading (e.g. reading for gist,
content, style). As reading is often equated with skill in decoding, “learning to program” in
schools is often equated with learning the vocabulary and syntax of a programming
language. But skilled programming, like reading, is complex and context-dependent, so we
must begin to unpack the contexts in which programming is carried out and learned.

Learning computer programming 145

Environments in which children learn to read are usually overlooked because adequate
environments f. I e.g. plenty of books. good lighting, picture dictionaries, good readers to
help with hard words, vocabulary cards, phonics charts) are taken for granted. By contrast,
good programming environments are not generally available to schools. Determining how
children develop programming skills will not be possible without due consideration of the
programming environment in which learning and development takes place, and of how
learning activities are organized.

Programming Environment
The distinction between a programming language and a programming environment is

crucial. A programming language is a set of commands and rules for command
combinations that are used to instruct the computer to perform specified operations. The
programming environment, on the other hand, is the larger collection of software operating
systems and programming tools) and hardware (memory, disk storage, hard copy
capability) available to the programmer. It can include an editor program to facilitate
program writing, code revising, and copying useful lines of code from one program to
another: debugging aids: elaborate trace routines for following the program's flow of
control: automatic documenters; cross-reference utilities for keeping track of variables: and
subroutine libraries.

Good programming environments (for example, those most extensively developed for
working on large computers in Lisp and PL/I) make the coding aspect of programming far
more efficient, allowing the programmer to concentrate on higher level issues of program
design, efficiency, and elegance. In contrast, the programming environments provided for
today's school microcomputers are so impoverished (typically consisting of only a crude
editor and limited trace functions) that entering the code for a program and dust getting it
to execute correctly is the central problem.

Finally, despite vigorous arguments about the educational superiority of different
programming languages, there are no data on whether different languages lead to
significant differences in what children need to know prior to programming, or what
cognitive benefits they derive from it. Although such differences between languages may
exist, they do not affect our point, since these differences can be manipulated radically by
restructuring the programming environment. Attention is best directed to general issues
about programming, rather than those that are programming language specific.

Instructional environment
While features of the programming environment are important for learning to program,

how successfully a child will master programming also depends on the instructional
environment and the way in which resources such as computer access time and file storage
are allocated. Each of these points concerns the context of cognitive activities, which we
know from cognitive science and developmental psychology to be critical to the level of
performance achieved in cognitive tasks

146 Roy Pea and D. Midian Kurland

(e.g. for reviews, see Brown et al., 1983; Laboratory of Comparative Human Cognition,
1983).
 Deciding how to introduce programming and assist students in learning to program is
hampered today by the paucity of pedagogical theory That current “fact learning''
approaches to programming instruction are inadequate has become apparent from studies
of the kinds of conceptual errors made by novice programmers instructed in that way For
example. novice adult programmers reveal deep misunderstandings or programming
concepts, and of how different lines of programming code relate to one another in program
organization (Bonar & Soloway, 1982; Jeffries, 1982; Sheil, 1980, 1981a; Soloway, Bonar
& Erlich, 1983; Soloway, Ehrlich, Bonar & Greenspan, 1982). As expected from what
they are taught. they know the vocabulary and syntax of their programming language.
Their misunderstandings are much deeper (Jeffries, l982), such as assuming that all
variables are global (when some may be specific to one procedure). and expecting that
observing one pass through a loop allows them to predict what will happen on all
subsequent passes (although the outputs of programming statements which e;' for certain
conditions ma change what will happen during any specific loop Research by Mayer
(1976), Miller (1974), and Sime, Arblaster and Green (1977) has revealed that adult
novice programmers have a difficult time generally with the flow of control concepts
expressed by conditionals J or a review of these findings, see duBoulav, O'Shea & Monk.
1981). These conceptual difficulties, even among professional programmers, have been
lamented by such programming polymaths and visionaries as Minsky 119701 and Floyd
1979) as due to problems with how programming is taught Too much focus is placed on
low level form such as grammar, semantic rules, and some pre-established algorithms for
solving classes of problems, while the pragmatics* of program design are left for students
to discover for themselves. Interestingly, these complaints about writing

One many distinguish for artificia1 programming languages, just as in the case of
natural languages. between three major divisions of semiotics, or the scientific study of
properties of such signalling systems (Crystal, 198O). These three divisions, rooted in the
philosophical studies of Peirce, Carnap, and Morris, are "Semantics, the study of the
relations between linguistic expressions and the objects in the world which the refer to or
describe, syntactics. the study of the relation of these expressions to each other, and
pragmatics. the study.' of the dependence of the meaning of these expressions on their
users including the social situation in which they are used) ' ibid . p 316) Studies of natural
language pragmatics have focused on the "study of the language from the point of view of
the user, especially of the choices he makes, the constraints he encounters in using
language in social interaction, and the effects his use of language has on the other
participants in an act of communication ibid., p. 278).

Although there are important disanalogies to natural language. a pragmatics of
programming languages concerns at least the study of programming languages from the
viewpoint of the user. especially of the design. choices that he or she makes in the
organization of lines of programming code within programs or software systems), the
constraints that he or she encounters such as the requirements of a debuggable program
that is well-documented for future comprehension and modification) in using
programming language in social contexts, and the effects that his or her uses of
programming language have on the other participants (such a ''se computer, as ideal
interpreter, or other humans) in an act of communication involving the of the
programming language.

Learning computer programming 147

programs are similar to those voiced about how writing in general is taught (e.g.
Scardamalia & Bereiter, 1983).

What o we know about conceptual problems of children learning to program? Problems
similar to those of adult novices are apparent. To take one example, in our research with 8-
to 12-year-old Logo programmers (Kurland & Pea. 1983), we find through their
think-aloud protocols and manual simulation of programs that children frequently adopt a
systematic but misguided conception of how control is passed between Logo procedures.
Many children believe that placing the name of the executing procedure within that
procedure causes execution to “loop" back through the procedure, when in fact what
happens is that control is passed to a copy of the executing procedure. This procedure is
then executed, and when that process is complete. passes control back to the procedure that
last called it. Children adopted mental models of flow of control which worked for simple
cases, such as programs consisting of only one procedure, or tail recursive procedures, but
which proved inadequate when the programming goal required more complex
programming constructions.

In other developmental studies of Logo programming skills (Pea, 1983), even among
the 25c of the children (8- and 9-year-aids: 11- and 112-year-olds) who were extremely
interested in learning programming, the programs that they wrote reached but a moderate
level of sophistication after approximately 30 hours of on-line programming experience
during the year. Children's grasp of fundamental programming concepts such as variables,
tests, and recursion, and of specific Logo primitive commands such as "REPEAT," was
highly context-specific. For example, a child who had written a procedure using REPEAT
which repeatedly printed her name on the screen did not recognize the applicability of
REPEAT in a program to draw a square. Instead, the child redundantly wrote the same
line-drawing procedure four different times. We expect that carefully planned sequences of
instruction will be important to ensure that programming knowledge is not "rigid"
(Werner, 1957), or "welded" (Shif, 1969) to its contexts of first learning or predominant
use. Such rigidity is a common finding for early developmental levels in diverse domains
(Brown et al., 1983).

More broadly, in the National Assessment of Educational Progress survey of 2500
13-year-olds and 2500 17-year-olds during the 1977- 1978 school year (National
Assessment of Educational Progress. 1980), even among the small percentage who
claimed to be able to program, "performance on flowchart reading exercises and simple
BASIC programs revealed very poor under-

The concept of flow of control'' refers to the sequence of operations that a computer
program specifies. The need for the term emerges because not all control is linear. In
linear control, lines of programming instructions would be executed in strict linear order
first, second, third, and so on But in virtually all programming languages, various ''control
structures'' are used to allow nonlinear control. For example, one may - 'GOTO" other
lines in the program than the next one in BASIC, in which case flow of control passes to
the line of programming code referred to in the GOTO statement. Because a program's
"flow of control" may be complex. programmers often utilize programming flowcharts,
either to serve as a high level plan for creating their program, or to document the flow of
control in their program

148 Roy Pea and D. Midian Kurland

standing of algorithmic processes involving “conditional branching” (cited by Anderson,
1982, p. 14).

Educators often assume that adult programmers are not beleaguered by conceptual
problems in their programming, but we have seen that they are. Once we recognize that
programming by intellectually mature' adults is not characterized by error-free, routine
performances. we might better understand difficulties of children learning to program, who
devote only small amounts of school time to learning to program.

These findings lead us to two central questions about programming instruction which we
define broadly to include the direct teaching provided by educators as well as the individual
advice, modelling, and use of metaphors with which they support instruction and learning.
How much instruction; and what types of instruction, should be offered? How much direct
instruction is best for children to learn programming is a controversial question (e.g. Howe,
1981: Papert. 1980. At one extreme schools teach programming as any other subject with
''fact sheets' and tests: at the other, they provide minimal instruction. encouraging children
to explore possibilities, experiment, and create'-their own problems to solve. This second
approach, popularized by Papert (l980) argues that little overt instruction is necessary if the
programming language is sufficiently engaging and simple to use, while at the same time
powerful enough for children to do projects that they find meaningful. Though this'
discovery learning perspective is not universally shared, even by Logo devotees (Howe.
18i). it has had a pervasive influence over uses of Logo b' schools,

What type of instruction should be offered, and when in the course of programming skill
development specific concepts, methods, and advice should be introduced are also critical
questions. Two central factors are implicated by cognitive science studies. One is the
current mental model or system of knowledge that the student has available at the time of
instruction. A second is the goal-relevance of the problem solving activity required of the
student. On the first point, there are no careful studies of the success of different
instructional acts as a function of a student's level of understanding for programming akin
to those carried out by Siegler (1983) for such concepts as time, speed, and velocity. At a
more general level, Mayer (1979, 1981) has shown that a concrete conceptual model of a
programming system aids college students in learning BASIC by acting as an advance
organizer of the details of the language. With the conceptual model, learners were able to
assimilate the details of the programming language to the model rather than needing to
induce the-model from the details.

On the second point, we would ask how compatible are the teacher's instructional goals
with children's goals and purposes in learning programming
Recent developmental cognitive science and cross-cultural studies of cognition (e. Brown,
1982; Laboratory of Comparative Human Cognition, 1983), have shown that assessing task
performance within a goal structure familiar to the person is necessary for determining the
highest developmental level of an individual's performances. For learning to program,
goals of the programming activity need to be contexted for the child in terms of other
meaningful and goal-

Learning computer programming 149

directed activities, connecting either to everyday world affairs, to other aspects Of the
curriculum, or to both. Papert 1980) has described this as 'syntonic' learning. For example,
in our studies Logo classroom children found two contexts especially motivating: creating
video games and simulating conversations. The most intensive and advanced
programming efforts were in the service of children's goals such as these. Dewey's (1900)
point about the importance for any learning that developments in the new skill serve as
more adequate means for desired ends thus again receives new support. A similar
emphasis underlies the successful use of electronic message and publishing systems in
classrooms e. g Black. Levin. Mehan & Quinn. 1983; Laboratory of Comparative Human
Cognition, 1982). Embedding computer programming activities of increasing cognitive
complexity in children's goal structures may promote learning to program and support the
transfer of what is learned in programming to problem solving activities in other domains.

Our point throughout this section has been that programming is not taught by computers
or by programming languages but by teachers, with the aid of the supports of a
programming environment. How effectively children of different ages and with different
background knowledge learn programming will be contingent upon the capabilities of their
teachers, the appropriateness of their learning activities to their current level of
understanding in programming, and the features available in their programming
environment. Studies to date have not incorporated these considerations that a
developmental cognitive science perspective recognizes as central.

WHAT IS SKILLED PROGRAMMING?

How to define and assess the constellation of skills which comprise programming has
long been a major problem for industry (Pea & Kurland. 1983b), and is becoming so for
schools. We define the core sense of "programming'' as the set of activities involved in
developing a reusable product consisting of a series of written instructions that make a
computer accomplish some task. But in order to move from definition to instruction, one
must begin to unpack programming skill", in contrast to the black box approach to
programming prevalent in schools. Promising moves in this direction have already been
provided by careful analyses of what expert programmers do, and what types and organiz-
ations of knowledge they appear to have in memory that they access during programming.
This research strategy, characteristic of cognitive science, has revealed significant general
features of expert problem solving skills for diverse domains, such as algebra (Lewis,
1981). -chess (Chase & Simon. 1973). geometry (Anderson, Greeno, Kline & Neves.
1981), physics (Chi, Feltovich & Glaser, 1981; Larkin. McDermott, Simon & Simon,
1980). physical reasoning (deKleer & Brown. 1981). and writing (Bereiter & Scardamalia.
1982), and it is providing new insights into components of programming skill. In terms of
what a programmer does, a set of activities is involved in programming for either novices
or experts, which constitutes phases of the problem solving process (e.g. Newell & Simon.
1972: Polya. 1957). These activities, which may be invoked at any time and recursively
during the development of a program, are: (1)

150 Roy Pea and D. Midian Kurland

understanding the programming problem; (2) designing or planning a programming
solution; (3) writing the programming code that implements the plan; and (4)
comprehension of the written program and program debugging. An extensive review of
these cognitive subtasks of programming may be found in Pea and Kurland (1983b).
In terms of what an expert programmer knows. findings on the knowledge schemas,

memory organizations and debugging strategies which expert programmers possess are of
particular interest Recent studies of programmers characterize high-level programming
skill as a giant assemblage of highly specific, low-level knowledge fragments Atwood &
Ramsey. 1978; Brooks.

The design of functional programmer's apprentices" such as Barstow's 199;
Knowledge Based Program Construction, and Rich and Shrobe's "Lisp programmer's
apprentice" Rich & Shrobe, 1978: Shrobe. Waters & Sussman. 1979: Waters, l982, and the
MENO Programming Tutor (Soloway, Rubin, Woolf, Bonar & Johnson, 1982) has
involved compiling a "plan library" of the basic programming "schemas," or recurrent
functional chunks of programming code that programmers are alleged to use Observations
of programmers support these introspective analyses of "chunk;" of programming
knowledge Eisenstadt. Laubsch and Kahney (1981) found that most novice student
programs were constructed from a small set of program schemas. and Jeffries 1982), in
comparing the debugging strategies of novice programmers and graduate computer science
students, found that experts saw whole blocks of code as instantiations of well-known
problems such as calculating change. Soloway and colleagues)Bonar, 1982: Ehrlich &
Soloway, 1983; Johnson, Draper & Soloway, 1983: Soloway & Ehrlich, 1982: Soloway,
Ehrlich, Bonar & Greenspan. 1982. also see Kahney & Eisenstadt. 1982) postulate a model
in which programmers use recurrent plans as "chunks" in program composition. and
identified such plans in programs written by Pascal novices (e.g. the ''counter variable
plan''). But for developmental cognitive science we will need studies of how students
mentally construct such plan schernas from programming instruction, experience, and prior
knowledge.

A related aspect of programming skill is the set of rules that experts use to solve
programming problems, but again we lack genetic studies. In an analysis of a
programmer's think-aloud work on 23 different problems. Brooks (1977) demonstrated
that approximately 104 rules were necessary to generate the protocol behavior, Similarly.
Green and Barstow (1978) note that over a hundred rules for mechanically generating
simple sorting and searching algorithms e.g. Quicksort) are familiar to most programmers.

A third aspect of programming skill is the ability to build detailed "mental models" of
what the computer will do when a program runs. An expert programmer can build dynamic
mental representations, - or "runnable mental models" (Collins & Gentner, 1982) and
simulate computer operations in response to specific problem inputs. The complexities of
such dynamic mental models are revealed when skilled programmers gather evidence for
program bugs and simulate the program's actions by hand Jeffries. 1982). Not all program
understanding is mediated by hand simulation; experts engage in

Learning computer programming 151

global searches for program organizational structure, guided by 'adequate program
documentation, a strategy akin to what expert readers do (Brown.
1983b; Brown & Smiley. 1978; Spiro. Bruce & Brewer. 1980). How individuals develop
such rich procedural understandings s currently unknown.

Expert programmers not only have available more knowledge schemas, strategies, and
rules applicable to solving programming problems, but they perceive and remember larger
"chunks'' of information than novices. The c1assic Chase and Simon (1973) finding of
short-term memory span advantages for chess experts over novices for meaningful
chessboard configurations but not for random configurations has been replicated for
programming (Curtis. Sheppard, Milliman, Borst & Love, 1979: McKeithen, Reitman.
Rueter & Hirtle, 1981; Sheppard. Curtis, Millirnan & Love, 1979: Schneiderman. l977)
For example, McKeithen et al. (1981) found that experts clustered keyword commands
according to meaning e.g. those functioning in loop statements), whereas novices clustered
according to a variety of surface ordinary language associations such as orthographic
similarity and word length), intermediates falling between the two. Similarly, Adelson
(1981) found that recall clusters for experts were functionally or ''deeply" based; those of
novices were based on "surface'' features of programming code. This is a major
developmental transformation, but we do not understand how it occurs. DiPersio, Isbister,
and Shneiderman (1980) extended this research by demonstrating that performance by
college students on a program memorization/ reconstruction task provides a useful
predictor of programming test performances.

It is also a widely replicated finding that expert programmers debug programs in
different ways than novices (Atwood & Ramsey. 1978: Gould. 1975: Gould &
Drongowski, 1974; Youngs. 1974, Jeffries 1982) found that program debugging involves
comprehension processes analogous to those for reading ordinary language prose. Experts
read programs for flow of control execution), rather than line-by-line (as text). But how do
programmers shift from surface to deep readings of programs as they develop debugging
skills?

In conclusion, we make one important observation. Expert programmers know much
more than the facts of programming language semantics and syntax. However, the rich
knowledge schemas, strategies. rules, and memory organizations that expert programmers
reveal are directly taught only rarely. Many students appear to run aground in
programming for lack of such understandings. This does not mean that they could not be
taught, but for this to take place effectively will require considerable rethinking of the
traditional computer science curriculum. These cognitive qualities appear instead to be a
consequence of an active constructive process of capturing the lessons of program writing
experience for later use.

LEVELS OF PROGRAMMING SKILL DEVELOPMENT
To date, observations of levels of programming skill development (cf. Howe. 1980)

have been extremely general and more rationally than empirically derived. Accounts of
novice - expert differences in programming ability among

152 Roy Pea and D. Midian Kurland

adults coupled with observations of children learning to program provide a starting point
for developing a taxonomy of levels of programming proficiency. This taxonomy can
guide our research by providing a developmental framework within which to assess a
student’s programming expertise and make predictions for types of transfer beyond
programming as a function of a student’s level of expertise.
 We believe that at least four distinct levels of programming ability can be identified
that have distinct implications for what type of skill might transfer as the result of their
achievement. These levels represent pure types and may not be characteristic of an
individual, but they capture some complexities in what it means to develop programming
skills. We view these levels only as guides toward more adequate characterizations of the
development of programming abilities. Further differentiation will inevitably be required,
in terms of the cognitive subtasks involved in the levels and refined sublevels.

Level I Program User

A student typically earns to execute already written programs such as games.
demonstrations, or computer-assisted instruction lessons before beginning instruction in
ho% :c program. What is learned here is important (i.e. what specific keys do, how to boot
a disk, how to use screen menus), but does not reveal how the program works or that a
program controls what happens on the screen For many computer users this level is
sufficient for effective computer use e g. for word processing. game playing, electronic
mail). But to be more in control of the computer and able to tailor its capabilities to ones
own goals, some type of programming is required.

From this level .e would expect relatively little transfer beyond computer use, but some
transfer on computer literacy issues. For example, given sufficiently wide exposure to
different types of programs, a student would be expected to know what computers are
capable of doing, what they cannot do. and fundamental aspects of how they function in
their everyday lives. As users, then. children might learn when computers are appropriate
tools to apply to a problem.

Level II Code Generator
At this level the student knows the syntax and semantics of the more common

commands in a language. He or she can read someone else's program and explain what
each line accomplishes. The student can locate 'bugs'' preventing commands from being
executed (e.g. syntax errors'), can load and save program files to and from an external
storage device, and can write simple programs of the type he or she has seen previously.
When programming, the student does very little preplanning and does not bother to
document his or her programs. There is no effort to optimize the coding, use error traps, or
make the program usable by others A program created at this level might just print the
student's name repeatedly on the screen or draw the same shape again and again in
different colors. The student operates at the level of the individual command and does not
use subroutines or procedures created as part of other programs. This level of
understanding of the programming process is sufficient for creating

Learning computer programming 153

short programs. But to create more widely useful and flexible programs. the student needs
to progress to at least the next level.

At level II, more specific types of computer literacy related transfer would be expected,
Students should develop better skills for dealing with more sophisticated software tools of
the type which are rapidly permeating the business world. Computer-naive users of office
information systems. even calculators. have many problems e.g. Mann, 1975; Nickerson,
1981) and construct naive, error-ridden mental models of how they work Mayer &
Bayman. 1981; Newman & Sproull, 1979; Young, 198l). Knowledge characteristic of this
level may be required to attenuate these problems. Sheil (1980, 1981a, b) provides
compelling arguments that most systems require low level programming if the user wishes
to take advantage of system options, a basic competency he has designated as "procedural
literacy."

While potential computer literacy transfer from low level programming exposure seems
a reasonable expectation, what types of cognitive transfer should occur from this level of
programming expertise is disputable. Our observations of children programming at this
level suggest that some appreciation of the distinction between bugs and errors, degrees of
correctness, and the value of decomposing program goals into manageable subparts may
develop and transfer to other domains, but that a student's attention is typically so riveted to
simply getting a program to work that any appreciation for more general cognitive
strategies is lost.

Level III Program generator

At this level the student has mastered the basic commands and is beginning to think in
terms of higher level units. He or she knows sequences of commands accomplish program
goals (e. g. locate and verify a keyboard input: sort a list of names or numbers: or read data
into a program from a separate text file). The student can read a program and explain its
purpose, what functions different parts of the program serve, and how the different parts
are linked together. The student can locate bugs that cause the program to fail to function
properly (e.g. a sort routine that fails to correctly place the last item in a list) or bugs that
cause the program to crash as a result of unanticipated conditions or inputs (e.g. a division
by zero error when the program is instructed to find the mean of a null list). The student
can load, save, and merge files and can do simple calls to and from files from inside the
main program. The student may be writing fairly lengthy programs for personal use, but
the programs tend not to be user-friendly. While the student sees the need for
documentation, he or she does not plan programs around the need for careful
documentation or clear coding so that the program may be maintained by others. For this
general level, one can expect to identify many sublevels of programming skill.

Within this level of expertise, students should develop some appreciation for the
process of designing a successful program. Such understanding has potentially powerful
implications for their work in other domains, particularly if such relationships are
explicitly drawn by the teacher for students, or exemplified in other domains. However, it
appears from our classroom observations and inter-

154 Roy Pea and D. Midian Kurland

views with teachers that for students to spontaneously transfer computational concepts or
language constructs used in one area of programming to other programming projects is a
major accomplishment. Ideas about when to use variables or the value of planning, as in
designing program components so that the\ can be reused n the future. and following
systematic conventions (such as beginning all graphics designs at their lower left corner, to
make merging components into programs easier are all important accomplishments at this
level that should not be taken for granted.

Level IV Software developer

Finally, at this level the student is ready to write programs that ate not or... complex and
take full advantage of the capabilities of the computer, but are intended to be used by
others. The student now has a full understanding of all the features of. a language and how
the language interacts with the host computer (e.g. how memory is allocated or how
graphics buffers may be protected from being overwritten. When given programs to read,
the student can scan the code and simulate mentally what the program is doing. see how
the goals are achieved and how the programs could be better written or adapted for other
purposes. Programs are now written with sophisticated error traps and built-in tests to aid
in the debugging process and to ensure the program is crash-proof. Beyond writing code
accomplishing the program's objective, the student can optimize coding to increase speed
and minimize the memory required to run a program To decrease the time needed to write
programs, he or she draws heavily on software libraries and programming utilities. Finally,
hear she often crafts a design for the program before generating the code, documents the
program fully, and writes the program in a structured, modular fashion so that others can
easily read and modify it. Major issues in software engineering at high sublevels within
this level of expertise are discussed by Thayer, Pyster and Wood (1981).

It is at this level of programming sophistication that we would expect to see most
extensive evidence for cognitive transfer. The student can distance himself or herself
sufficiently from the low level coding aspects of program generation to reflect on the
phases and processes of problem solving involved. The issues of programming which the
student is concerned with at this level - issues of elegance, optimization, efficiency,
verification. provability, and style - begin to transcend low level concerns with program
execution, and may lead him or her to consider wider issues. The need at this level to be
conscious of the range of intended users of programs forces the student to take the audience
fully into account, a skill that has wide applicability in many other domains, such as
writing,

Implicit in these distinctions between levels of programming skill and their linking to
predictions about types of transfer is a theory of programming at odds with the 'naive
technoromanticism'' prevalent in educational computing. While it is conceivable that even
low levels of programming skill are sufficient to produce measurable cognitive transfer to
non-programming domains, we contend that on the limited evidence available, this would
be unlikely. Students who can barely decode or comprehend text are not expected to be
proficient

Learning computer programming 155

writers. Similarly, we doubt that students with a low level understanding of programming
and the skills that programming entails will write functional programs or gain insights into
other domains on the basis of their limited programming skill.

COGNITIVE CONSTRAINTS ON LEARNING TO PROGRAM

Beyond asking what general cognitive characteristics may be prerequisite to or
substantively influence a child's learning to program. some ask what "developmental level
children must be "at" in order to learn from programming experiences The concept of
"developmental level'' at the abstract theoretical planes of preoperational. concrete
operational. and formal operational intellectual functioning has proved to be useful for
instructional psychology in understanding children's ability to benefit from certain types of
learning experiences (e.g. Inhelder, Sinclair & Bovet, 1974). But the very generality of
these stage descriptions is not suitably applied to the development of specific domains of
knowledge such as programming skills.

We have two reasons for not pursuing the development of programming skills in terms
of Piagetian "developmental levels'' First, there is strong evidence that the development
and display of the logical abilities defined by Piaget is importantly linked to content
domain (Feldman, 1980: Gardner, 1983: Piaget. l972. to the eliciting context (Laboratory
of Comparative Human Cognition. l983'. and to the particular experiences of individuals
(Price-Williams. Gordon & Ramirez. 1969). Since it is not apparent why and how different
materials affect the "developmental level'' of children's performances within Piagetian
experimental tasks, it is not feasible to predict relationships between learning to program
and performances on the Piagetian tasks. Our second objection is that learning to program
has neither been subjected to developmental analysis nor characterized in terms of its
component skills that ma,,, develop, although such analyses are necessary for articulating
measures that indicate the availability and developmental status of these skills for
particular learners.

While no research has been directly aimed at defining the cognitive prerequisites for
learning programming, at least six factors are frequently mentioned: mathematical ability.
memory capacity, analogical reasoning skills, conditional reasoning skills, procedural
thinking skills, and temporal reasoning skills. These cognitive abilities, each of which have
complex and well-researched developmental histories, are presumed to impact on learning
to program. and could be promising directions for research.

Mathematical Ability

Beyond "general intelligence'', programming skill is said to be linked to general
mathematical ability. Computers were first developed to help solve difficult mathematical
problems. Although many computer uses today are nonmathematical (e.g. data base
management, word processing), the notion persists that to program one must be
mathematically sophisticated. Media accounts of children using computers in schools have
perpetuated the belief that programming is the province of math whizzes. Although we
doubt that math and programming abilities are related once general intelligence is factored
out.

156 Roy Pea and D. Midian Kurland

mathematical ability cannot be ruled out as a prerequisite to the mastery of certain levels
of programming skills.

Processing capacity

Programming is often a memory-intensive enterprise requiring great concentration and the
ability to juggle values of a number of parameters at a time. Individual differences in
processing capacity are thus a likely candidate for influencing who becomes a good
programmer. Forward and backward span tasks, and more recently developed
transformational span measures (cf. Case & Kurland, 1980; Case, Kurland & Goldberg,
1982) assess how much information one can coordinate at a given moment, and appear to
index processes basic to learning. Performances on such tasks have reliably correlated with
general intelligence, Piagetian developmental level, and ability to learn and use problem
solving strategies e.g. Hunt. 1978).

Analogical Reasoning

A student may have background knowledge and capacities relevant to programming and
et neither connect them to the programming domain, nor transfer knowledge acquired in
programming to other domains. This access'' of knowledge is absolutely fundamental to
learning and problem solving throughout life e.g. Brown. 1982). Transfers of knowledge
and strategies, both "into'' and "out of-' learning to program may depend on analogical
thinking skills Tasks designed to measure abilities for engaging in analogical thinking
e.g. Gick & Holyoak, 198O Sternberg & Rifkin, 1979) may predict level of programming

development and transfer outcomes. Mayer (1975, 1981) argues that students learn
programming by comparing the flow of control intrinsic to computational devices to that of
phvsico-mechanical models that they already possess. Also. duBoulay and O'Shea 1976)
and duBoulav et al., (1981) have successfully used extensive analogical modelling to
explain computer functioning to novice 12-year-old programming students.

Conditional Reasoning

Working with conditional statements is a major part of programming, since they guide
the operation of loops. tests, input checking, and other programming functions. It is thus
reasonable to predict that a student who has sufficient understanding of conditional logic,
the various "if. . . then" control structures and the predicate logical connectives of
negation. conjunction, and disjunction, will be a more successful programmer than a
student who has trouble monitoring the flow of control through conditional statements.

Procedural Reasoning

Several kinds of quasi-procedural everyday thought may influence how easily

is -'quasi -procedural'' rather than ''procedural'' about giving and following task
instructions. directions, arid recipes, is that unlike procedural instructions in a computer
program, there is often ambiguity in the everyday examples, such that the instructions,
directions. and recipes are not always unequivocal in meaning They are also not
constrained by strict sequentiality. One many often choose to bypass steps in a recipe or
set of instructions, or reorder the steps. Neither option is available in the strict
procedurality of programmed instructions. Yet similarities between the everyday cases and
programming in3tructions are compelling enough to make their designation as ''quasi-
procedural'' understandable.

Learning Computer Programming 157

a learner masters the how of control" procedural metaphor central to understanding
programming. including giving and following complex instructions (as in building a model),
writing or following recipes, and concocting or carrying out directions for travel.
Presumably, learners more familiar with these linear procedures, analogous to the flow of
control for computer operations expressed as instructions in a computer program, will more
readily come to grips with the procedural thinking' touted as a central facet of programming
expertise Papert. l980 Shell, 1980). However the development of procedural thinking has
been little studied to date.

Temporal reasoning

The activity of temporal reasoning is related to procedural thinking, but with a distinct
emphasis. Creating and comprehending programs require an understanding of the temporal
logic of sequential instructions: "it is the intellectual heart of learning how to program''
(Galanter, 1983, p. 150). In teaching programming, Galanter says: "The central theoretical
concept that guided this effort was that classical forms of spatial - geometric - pictorial
thinking must be augmented, and occasionally replaced, by temporal - imaginative -
memorial logic. The child must learn to substitl4te an inner temporal eye for the outer
spatial eye" p. 163. Going somewhere in the program next. running one subroutine or
procedure before another, ensuring one counter does not exceed a certain value until another
operation is performed these fundamental operations all require temporal understanding. Yet
understanding temporal terms is a major developmental achievement, a challenge for
children younger than 7 to 8 years e.g. Friedman. 1982: Piaget. 1969). Futurity also presents
complex conceptual problems for the planning activities involved in programming, such as
imagining outcomes of the possible worlds generated by program design options (Atwood,
Jeffries & Poison, 1980. or the "symbolic executions" while writing programming code
(Brooks, 1977).

In sum, the cognitive constraints on developing programming skills are
currently unknown. Although a developmental cognitive science perspective
predicts that a student's attainable level of programming skill may be constrained by
cognitive abilities required in programming, no studies relate level of programming skill to
the abilities that we have described. Children may have conceptual and representational
difficulties in constructing dynamic mental models of ongoing events when the computer is
executing program lines that constrain their level of programming skill. Also, systematic but
''naive" mental models or intuitive epistemologies of computer procedural functioning ma,.
initially mislead children's understanding of programming, as with adult novices. Since
learning to program is difficult for many students, there is a serious need for research
findings that will guide decisions about tailoring programming instruction according to a
student's relevant knowledge prior to learning to program.

EVIDENCE FOR COGNITIVE EFFECTS OF PROGRAMMING

We now return to evidence for the claims for broad cognitive impacts of pro-

158 Roy Pea and D. Midian Kurland

gramming experience, with greater awareness of the complexities of learning to program
and issues of transfer. In sum, there is little evidence for these claims.

Dramatic accounts have been offered of how some school-aged children's thinking
about their own abilities to solve problems is transformed through learning to program
(e.g. Papert et al., 1979: Watt, 1982; Weir & Watt, 1981: Weir, 1981). Important social-
interactional changes have been demonstrated in classrooms where children are learning
Logo programming (Hawkins. Sheingold. Gearhart & Berger, 1983). and for some
children programming is an important and deeply personal intellectual activity. Similarly.
many teacher reports focus on social and motivational rather than cognitive aspects of this
experience Sheingoid. Kane, Endreweit & Billings, 1981; Weir, 1982). It is not ' et clear
what the cognitive benefits of programming for such children may be in terms of the
transfer claims reviewed earlier,

On the cognitive side. Ross and Howe (1981) have reviewed ten years of relevant
research to evaluate Feurzeig e al.'s (1969) four general claims on the cognitive impacts of
programming. The relevant research has been with Logo, and in nonrepresentative private
schools. Below we summarize Ross and Howe's review, and integrate summaries of other
studies relevant to these claims. In terms of our account of levels of programming skill and
expected transfer outcomes from them, we must caution that studies so far, including our
own, have an important limitation. They have all looked at what we have designated as
high level or cognitive transfer outcomes, expected to emerge only at the higher levels in
our account of programming skill, whereas the levels of programming attained by the
students in these studies were low because they only did six weeks to a year or so of
programming. In other words, there has been a mismatch of "treatment'' and transfer
assessments because of a failure to appreciate the different kinds of transfer to investigate
and their likely linkage to different levels of programming skill. For example, there are no
studies that have assessed the low, level transfer or application of programming concepts
such as ''variable'' in different types of programming within a language (e.g. graphics
versus list processing in Logo), or from one programming language to another, or of
computer literacy outcomes.

First, there are no substantial studies to support the claim that programming promotes
mathematical rigor. In a widely cited study by Howe, O'Shea and Plane (1979). researchers
who were highly trained programmers spent two years teaching Logo programming to
eleven 11-year-old boys of average or below average math ability. The first year they
studied Logo, the second math with Logo. each boy working for one hour per week in a
programming classroom. After two years, when Logo students were compared to non-
programmers (who on pretest had significantly better scores on the Basic Mathematics
Test, but equivalent scores on the Math Attainment Test), they had improved in Basic
Math enough to eliminate the original performance gap with the control group, but fell
significantly behind on the Math Attainment Test. Such global math score differences do
not support the "rigor" claim. The oft cited finding is that the Logo group learned to argue
sensibly about mathematical issues and explain mathematical difficulties clearly, but the

Learning computer programming 159

finding is based only on differences in ratings of Logo and control students in teacher
questionnaires (Howe et at.. 1979). The reliability of such ratings s questionable, since the
math teachers should have been blind to which students learned Logo.

Secondly, there are no reports demonstrating that programming aids children's
mathematical exploration. Reports by Dwyer 1975) for children learning BASIC. and
Howe et at. (1979). Lawler l98O. and Papert et al., (1979) for those using Logo, do
document children's goal-directed exploration of mathematical concepts such as 'variable"
on computers. Though encouraging, since math exploration and "mathland" play are likely
to support math learning, studies' have not shown any effects of "math exploration" during
programming outside the programming environment.

Third, although Feurzeig et al. (1969) suggest that the twelve 7- to 9-year-old children
to whom they taught Logo came to "acquire a meaningful understanding of concepts like
variable, function and general procedure'', they pro :e no evidence for the claim that
programming helped the children gain insight into these mathematical concepts.

Finally, we ask whether programming has been shown to provide a context and
language that promotes problem solving beyond programming. Papert et al. (1979)
conducted a Logo project with sixth graders for six weeks, and reported anecdotes that
children engage in extensive problem solving and planning activities in learning
programming. Whether such activities had cognitive effects beyond programming was not
studied. However, Statz (1973) carried out a study to assess this claim. Logo programming
was taught to sixteen 9- to 11-year-old children for a year. Statz chose four problem
solving tasks with intuitive, ill-specified connections to programming activities as transfer
outcome measures. The experimental group did better on two of these tasks (word puzzle
and a permutation task), but no better on the Tower of Hanoi task or a horserace problem
that Statz had designed. She interprets these findings as mixed support for the claim that
learning Logo programming promotes the development of more general problem solving
skills.

Soloway, Lochhead and Clement (1982), in reaction to the finding (Clement. Lochhead
& Monk, 1979) that many college science students have difficulty translating simple
algebra word problems into equations, found that more students solve such problems
correctly when they are expressed as computer programs rather than as algebraic
equations. They attribute this advantage to the procedural semantics of equations in
programs that many students lack in the algebraic task. This effect is much more restricted
than the increments in general problem solving skill predicted by the cognitive transfer
claims.

A very important idea is that not only computer programs, but one's own mental
activities can lead to "buggy" performances and misunderstandings. Tools for diagnosing
different types of' 'bugs" in such procedural skills as place-value arithmetic (Brown &
Burton, 1978; Brown & VanLehn. 1980; VanLehn. 1981) have resulted from extensive
programming efforts to build "bug diagnostic systems" (Burton, 1981). One may argue that
the widespread recognition that systematic "bugs" may beset performances in other
procedural

160 Roy Pea and D. Midian Kurland

skills, such as high school algebra (Carry, Lewis & Bernard. 1979: Matz, 1981) reflects a
kind of transfer beyond programming. No evidence indicates that programming students
demonstrate such transfer.

Planning in advance of problem solving, and evaluating and checking progress in terms
of goals. are important aspects of a reflective attitude to one's own mental activities (Pea,
1982). We have seen that the development of planning abilities is one major predicted
cognitive benefit of learning to program. We therefore developed a transfer task for
assessing children's planning (Pea & Hawkins, 1984. We reasoned that a microgenetic
method (Flavell & Draguns. 1957) allowing children to develop multiple plans was
comparable to the rounds of revisions carried out during programming, and would allow
for a detailed study of planning processes. Children planned aloud while formulating, over
several attempts, their shortest-distance plan for doing a set of familiar classroom chores,
using a pointer to indicate their routes. We gave the task twice, early and late in the school
year, to eight children in each of two Logo classrooms (8- and 9-year-olds; 11- and
12-year-olds), and to a control group of the same number of same-age children in the same
school. There were six microcomputers in each classroom, allowing substantial involve-
ment with programming.

As in related work on adults' planning processes by Goldin and Haves-Roth (1980: also
Haves-Roth & Haves-Roth. 1979; Haves-Roth. 1980), our product analyses centered on
''plan goodness'' in terms of metrics of route efficiency, and our process analyses centered
on the types and sequencing of planning decisions made (e.g. higher level executive and
metaplanning decisions such as what strategic approach to take to the problem, versus
lower level decisions of what route to take between two chore acts). Results indicated that
the Logo programming experiences had no significant effects on planning performances,
on any of the plan efficiency or planning process measures (Pea & Kurland, 1983a).
Replications of this work are currently under way with children in other schools.

CONCLUSIONS

As our society comes to grips with the information revolution, the ability to deal
effectively with computers becomes an increasingly important skill. How well our children
learn to use computers today will have great consequences for the society of tomorrow.
The competence to appropriately apply higher cognitive skills such as planning and
problem solving heuristics in mental activities both with and without computers is a
critical aim for education. As one contribution to these issues, at the beginning we argued
for and then throughout documented the need for a new approach to the pervasive
questions about the cognitive effects of computer programming. This approach, which we
characterize as developmental cognitive science, is one that does not merely adopt the
common perspective that computer programmers are all like adults, but is instead geared to
the learning experiences and developmental transformations of the child or novice, and in
its research would be attentive to the playing out

Learning computer programming 161

of those processes of learning and development in the instructional and programming
environments in which the novice gains expertise.

So can children become effective programmers and does "learning to program'
positively influence children's abilities to plan effectively, to think procedurally, or to view
their flawed problem solutions as "fixable" rather than "wrong"? We have shown that
answers to these questions depend on what 'learning to program" is taken to mean. We
reviewed cognitive science studies revealing that programming involves a complex set of
skills, and argued that the development of different levels of programming skill will be
highly sensitive to contexts for learning, including processes of instruction, programming
environment, and the background knowledge the student brings to the task. We found few
studies that could inform this new understanding, although many promising research
questions were defined from this perspective.

We dismissed two prevailing myths about learning to program. The myth embodied in
most programming instruction that learning to program is "learning facts" of programming
language semantics and syntax is untenable, since it leads to major conceptual
misunderstandings even among adult programmers, and since what is taught belies what
cognitive studies show good programmers do and know. These studies have direct
implications for new content and methods for programming instruction that are under
development in several quarters. Studies of learning to program and of transfer outcomes
are not yet available for cases where instruction has such nontraditional emphases. e.g. on
task analysis and problem solving methods that take advantage of what we know expert
programmers do. We also delivered arguments against the second myth, of spontaneous
transfer of higher cognitive skills from learning to program. Resistance in learning to
spontaneous transfer, and the predicted linkages of kinds of transfer beyond programming
to the learner's level of programming skill were major points of these critical reviews.

So when thinking about children learning to program, what levels of skills can be
expected? Reports of children learning to program (Howe, 1981; Levin & Kareev, 1980;
Papert et al., 1979; Pea, 1983), including the learning disabled, the cerebral palsied and the
autistic (Wait & Weir, 1981; Weir, 1981), suggest that most children can learn to write
correct lines of code (level II in our account). This is no small achievement since writing
grammatically correct lines of code is all many college students of programming achieve in
their first programming courses (Bonar & Soloway, 1982). This level of programming skill
may depend on the same abilities necessary for learning a first language.

However, for programming skills that are functional for solving problems.
"grammatical" programming alone is inadequate; the student must know how to organize
code and "plan schemas" to accomplish specific goals. Development to these higher levels,
where one becomes facile with the pragmatics of programming, may require strategic and
planful approaches to problem solving that are traditionally considered "metacognitive,"
and more characteristic of adolescents (Brown et al., 1983) than primary school children.
Further, the experience of the child in an elementary or junior high school program who
spends up to 30 to 50 hours per year programming is minuscule when compared

162 Roy Pea and D Midian Kurland

to the 5000 hours which Brooks (1980) estimates a programmer with only three years of
experience has spent on programming. Since it appears unreasonable to expect children to
become advanced programmers in the few years available to them in most school
programming courses, our educational goals should be more realistic and achievable. We
do not currently know what levels of programming expertise to expect. but in our
experience children who are programming experts are not common. There are thus large
gaps between what is meant by learning to program in the computer science literature, and
what
learning programming" means to educators interested in exposing this domain to children.

These discrepancies should temper expectations for the spontaneous effects of children's
limited programming experiences in school on their ways of thinking, at least for how
programming is taught (or not taught) today. Whether research on learning to program
with richer learning experiences and instruction will lead to powerful outcomes of
programming remains to be seen. In place of a naive technoromanticism, we have predicted
that the level of programming abilities a student has mastered will be a predictor of the
kinds of concepts and skills that the student will transfer beyond programming. Although
findings to date of transfer from learning to program have not been encouraging, these
studies suffer in not linking level of programming skill to specific outcomes expected, and
the critical studies of "low level" transfer expected from level I and II programming skills
remain to be carried out. Even more importantly, with thinking skills as educational goals,
we may be best off providing direct guidance that teaches or models transfer as a general
aspect of highly developed thinking processes (Segal, Chipman & Glaser, 1984; Smith &
Bruce, 1981). For these purposes programming may provide one excellent domain for
examples (Nickerson, 1982; Papert, 1980).

Throughout, we have emphasized how developmental research in this area is very much
needed. We need empirical studies to refine our characterizations of levels of programming
proficiency, extensive evaluations of the extent of transfer within and beyond programming
in terms of different programming and instructional environments, and studies to help
untangle the complex equation involving cognitive constraints, programming experience,
and programming outcomes. We believe all of these questions could be addressed b
careful longitudinal studies of the learning and development process by which individual
students become proficient (or not-so proficient) programmers, and of the cognitive
consequences of different levels of programming skill. Such studies would provide far
more relevant information for guiding the processes of education than standard
correlational studies. A focus on process and the types of interactions that students with
different levels of entering skills have with programming and instructional environments is
critical for understanding how developments in programming skill are related to other
knowledge. We are optimistic that others will join in work on these questions, for progress
must be made toward meeting the educational needs of a new society increasingly
empowered b information technologies.

Learning computer programming 163

REFERENCES

Adelson B Problem solving and the development of abstract categories in programming languages. Memory and
Cognition 9. 422 - 433 (1983).

Anderson J R., Greeno, J.G., Kline P. J. & Neves, D. M Acquisition of problem solving skill. In Cognitive Skills and their
Acquisition (ed. Anderson J. R.). Erlbaum, Hillsdale, NJ (1981).

Anderson R. E. National computer literacy. 1980 in Computer Literacy; Issues and Directions for
1985, (eds.) Seidel R. J., Anderson R. E. & Hunter B.). Academic Press. New York (1982)

Atwood NI. E. .Jeffries R. & Poison P. G Studies in plan construction. I, Analysis of an extended protocol. Tech. Rep No,
SAI-80-028-DEN). Science Applications, Inc., Englewood. CO (1980).

Atwood M. E. & Ramsey H. R. Cognitive structures in the comprehension and memory of computer programs An
investigation of computer debugging (Tech. Rep. No. TR-78A21). U.S. Army Research Institute for the Behavioral and
Social Sciences, Alexandria, VA (1978).

Barstow D. R. Knowledge-Based Program Construction. North-Holland, Amsterdam (1979).
Bereiter C. & Scardamalia M. From conversation to composition: Instruction in a developmental process. In Advances in

Instructional Psychology (ed. Glaser R.), Vol. 2. Erlbaum, Hillsdale, NJ (1982).
Black S. D., Levin J.A., Mehan H. & Quinn C. N. Real and non-real time interaction: Unraveling multiple threads of

discourse. Discourse Processes. 1983, in press.
Bonar, J. Natural problem solving strategies and programming language constructs. Proceedings of the Fourth Annual

Conference of the Cognitive Science Society, Ann Arbor, Michigan, 4- 6 August (1982).
Sonar J. & Soloway E. Uncovering principles of novice programming. Yale University Department of Computer Science.

Research Report #240. November 1982. (To appear in the Tenth SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages, Austin. Texas, January 1983.)

Brooks R. E. Studying programmer behavior experimentally: The problems of proper methodology. Communication of
the ACM 23. 207 -213 (1980).

Brooks R. E. Towards a theory of the cognitive processes in computer programming. International Journal of
Man-Machine Studies 9, 737, - 751 (1977).

Brown A. L. Learning and development: The problems' of compatibility, access, and induction. Human Development 25,
89-115 (1982).

Brown A. L. Metacognition, executive control, self-regulation and other even more mysterious mechanisms. In
Metacognition, Motivation and Learning (eds. Klume R. H. & Weinert F. E.). Luhlhammer. West Germany (1983a, in
press).

Brown A. L. Learning to learn how to read. In Reader Meets Author, Bridging the Gap .4 Psycholinguistic and Social
Linguistic Perspective (eds. LangerJ. & Smith-Burke T.). Dell. Newark. NJ 1983b).

Brown A. L.. Bransford J. D., Ferrara R. A. & Campione J.C. Learning, remembering, and understanding. In Mussen
Handbook of Child Psychology (eds. Flavell, J.H. & Markman, E.M.) Vol. 3. Wiley, New York (1983).

Brown A. L. & Smiley S. S. The development of strategies for studying texts. Child Development 49, 1076- 1088 (1978).
Brown J. S & Burton R. B. Diagnostic models for procedural bugs in basic mathematical skills Cognitive Science 2. 155-

192 (1978).
Brown J. S. & VanLehn K. Repair theory: A generative theory of bugs in procedural skills Cognitive Science 4. 379 -426

(1980).
BrunerJ. S. On cognitive growth. In Studies in Cognitive Growth (eds. Bruner J. S., Giver R. R. & Greenfield P M.).

Wiley. New York (1966).
Burton R. B. Debuggy: Diagnosis of errors in basic mathematics skills. In Intelligent Tutoring Systems (eds. Sleeman D.

H. & Brown J, S.). Academic Press. London (1981).
Carry L. R . Lewis C. & Bernard J. E. Psychology of equation solving An information processing study. Department of

Curriculum and Instruction, University of Texas at Austin, Austin. TX (1979).
Case R & Kurland D NI. A new measure for determining children's subjective organization of

164 Roy Pea and D. Midian Kurland

speech. Journal of Experimental Psychology. 30, 206 -222 (1980
Case R Kurland D M & Goldberg J Operational efficiency and the growth of short-term

memory span journal of Experimental Child Psychology 33, 386- 404 (19821).
Chase W C & Simon H A. Perception in chess Cognitive Psychology 4. 55 -81 1973t.
Chi M T H Feitovich P J & Glaser R Categorization and representation of physics problems by experts and novices Cognitive

Science 5 121 - 152 (1981
Clement J Lochhead J. & Monk C Translation difficulties in learning mathematics (Tech. Rep).
Cognitive Development Project. Department of Physics and Astronomy. University of Massachusetts. Amherst 1979.
Cole M & Griffin P Cultural amplifiers reconsidered In The Social Foundations of Language and Thought Essays in Honor of

Jerome S Bruner (ed Olson D R,). W W Norton. New York 1980,
Collins A & Gentner D. Constructing runnable mental models. Proceedings of the Fourth Annual Conference of the Cognitive

Science Society, Ann Arbor, Ml, August (1982).
Cromer R F. The development of language and cognition: the cognition hypothesis In New Perspectives in Child
Development (cc. Foss B.). pp. 184 -252 Penguin, London (1974)
Crystal D. A First Dictionary of Linguistics and Phonetics. Cambridge University Press, Cambridge (1980).
Curtis B., Sheppard S. B., Milliman P.. Borst M. A. & Love T. Measuring the psychological complexity of software
maintenance tasks with the Halstead and McCabe metrics. IEEE Transactions on Software Engineering SE-S. 96 - 104 1979).
DeKleer J & Brown J. S Mental models of physical mechanisms and their acquisition In Cognitive Skills and their

Acquisition (ed. Anderson J. R.). Erlbaum. Hillsdale, NJ (1981)
Dewey J. The School and Society. University of Chicago Press, Chicago (1900).
DiPersio T., Isbister D & Shneiderman B An experiment using memorization/reconstruction as a measure of programmer

ability. International Journal of Man-Machine Studies 13, 339 - 354 (1980).
DiSessa A. A. Unlearning Aristotelian physics: A study of knowledge-based learning. Cognitive Science 6. 37-75 (1982).
DuBoulay. J B H. & O’Shea T. How to work the Logo machine A primer for ELOGO (D.A I Occasional Paper No. 41

Department of Artificial Intelligence. University of Edinburgh. Edinburgh 119761.
DuBoulay. J B H. O'Shea T & Monk J The black box inside the glass box: Presenting computing concepts to novices.

International Journal of Man-Machine Studies 14. 237 - 249 1981,
Dwyer T. A Soloworks: Computer based laboratories for high school mathematics. Science and Mathematics 22. 93 -99

(1975)
Ehrlich K & Soloway E. An empirical investigation of the tacit plan knowledge in programming In Human Factors in

Computer Systems (eds. Thomas J. & Schneider M). Ablex. Norwood, NJ 1983.
Eisenstadt M Laubsch J H. & Kahney J H Creating pleasant programming environments for cognitive science students. Paper

presented at the meeting of the Cognitive Science Society, Berkeley. CA. August (19S1).
Feldman D H Beyond Universals in Cognitive Development. Ablex. Norwood, NJ (1980).
Feurzeig W., Horwitz P. & Nickerson R. S. Microcomputers in education (Report No. 4798) Prepared for: Department of
Health. Education, and Welfare - National Institute of Education. and Ministry for the Development of Human Intelligence.
Republic of Venezuela. Bolt Beranek & Newman. Cambridge. MA. October (1981).
Feurzeig W., Papert S., Bloom M., Grant R.. & Solomon C. Programming languages as a conceptual framework for teaching

mathematics (Report No. 1899). Bolt Beranek & Newman, Cambridge. MA (1969).
Flavell J. & Draguns J. A microgenetic approach to perception and thought. Psychological Bulletin 54. 197-217(1957).
Floyd R. W The paradigms of programming. Communications of the ACM 22, 455 - 460 (1979.
Friedman W. J (Ed.) The Developmental Psychology of Time, Academic Press, New York (1982).

Learning computer programming 165

Galanter E. Kids and Computers. The Parents' Microcomputer Handbook. Putnam, New York (1983)
Gardner H Frames f Mind. The Theory of Multiple Intelligences. Basic Books, New York (1983).
Gentner D. & Stevens A L. (Eds.) Mental Models. Erlbaum, Hillsdale, NJ 1983).
Gick M. L & Holyoak K. J. Analogical problem solving Cognitive Psychology 12, 306 - 355 (19841r
Gick M. L. & Holyoak K. j. Schema induction and analogical transfer Cognitive Psychology 15,

-39 1982').
Goldin S. E. & Haves-Roth B. Individual differences in planning processes N- 1488-ONR; A Rand Note.

Rand Corp Santa Monica, CA. June (1980).
Goldstein 1. & Papert S. Artificial intelligence, language. and the study of knowledge Cognitive

Science 1, 84- 123 1977).
Goody J. The Domestication of the Savage Mind. Cambridge University Press, New York (1977).
GouldJ. D. Some psychological evidence on how people debug computer programs. International journal of

Man-Machine Studies 7, 151 - 182 (1977).
Gould J. D. & Drongowski P. An exploratory investigation of computer program debugging. Human

Factors 16, 258- 277 (1974).
Green C. C. & Barstow D. On program synthesis knowledge. Artificial Intelligence 10, 241 - 279 (19781.
Greeno J.. Glaser R. & Newell A Research on cognition and behavior relevant to education in
mathematics science, and technology. Report submitted to the National Science Board Commission on
Precollege Education in Mathematics. Science, and Technology by the Federation of Behavioral.
Psychological and Cognitive Sciences, March (1983).
Hawkins J.. Sheingold K., Gearhart M. & Berger C. The impact of computer activity on the social

experience of classrooms. Journal of.4pplied Developmental Psychology 2. 361 -373(1983').
Haves J. R. & Simon H. A. Psychological differences among problem isomorphs. In Cognitive

Theory (eds. Castellan N. J., Jr., Pisoni D B. & Potts G. R.), Vol. 2. Erlbaum, Hillsdale, NJ (1977).
Hayes-Roth B. Estimation of time requirements during planning The interactions between motivation and

cognition. N-158i-ONR. A Rand Note. Rand Corp . Santa Monica. CA, November (1980)
Haves-Roth B & Haves-Roth F. A cognitive model of planning Cognitive Science 3. 275 - 310 (1979).
Howe J A M Deve1opmental stages in learning to program. In Cognition and Memory Interdisciplinary
Research of Human Memory Activities (eds. Klix F & Hoffman J.). North-Holland. Amsterdam (1980).
Howe J. A NI Learning mathematics through Logo programming (Research Paper No 153) Department of

Artificial Intelligence. University of Edinburgh. Edinburgh 1981).
Howe J A. M.. O’Shea T. & Plane F. Teaching mathematics through Logo programming An evaluation

study. In Computer-Assisted Learning-Scope, Progress and Limits eds. Lewis R. & Tagg E. D).
North-Holland, Amsterdam (1979).

Hunt E. Mechanics of verbal ability. Psychological Review 85. 109- 130 (1978)
Inhelder B.. Sinclair H. & Bovet M. Learning and the Development of Cognition. Harvard University

Press, Cambridge, MA (1974).
Jeffries R. A comparison of the debugging behavior of expert and novice programmers. Paper presented at

the Annual Meeting of the American Educational Research Association. New York City, March (1982').
Johnson A L.. Draper S & Soloway E. An effective bug classification scheme must take the programmer

into account. Proceedings of the Workshop on High-Level Debugging. Palo Alto. CA (1983).
Kahney H. & Eisenstadt NI. Programmers' mental models of their programming tasks The interaction of

real-world knowledge and programming knowledge Proceedings of the Fourth Annual Conference of
the Cognitive Science Society, Ann Arbor, MI, 4-6 August (1982)

Kurland D M. & Pea R. D. Children's mental models of recursive Logo programs. Proceedings of the Fifth
Annual Meeting of the Cognitive Science Society, Rochester, NY, May 1983 (Also Tech. Rep. 10,
Center for Children & Technology. Bank Street College. New York February 1983).

166 Roy Pea and D Midian Kurland

Laboratory of Comparative Human Cognition Culture and cognitive development In Mussen
Handbook of Child Psychology: History, Theories and Methods (ed. Kessen W.) Vol. 1 John Wile
New York, 1983.

Laboratory of Comparative Human Cognition. Microcomputer communication networks for education The
Quarterly Newsletter of the Laboratory of Comparative Human Cognition 4. April 1982

Larkin, J H . McDermott J Simon D P & Simon H A Expert and novice performance in solving physics
problems Science 208. 1335 1342 (l98O.

Lawler R W Extending a powerful idea Logo Memo No 58. M IT. Artificial Intelligence Laboratory.
Cambridge, MA. July (1980).

Levin, J A. & Kareev. Y Personal computers and education The challenge to schools (CHIP Report No 98)
Center for Human Information Processing. La Jolla, CA (1980)

Lewis C. Skill in algebra In Cognitive Skills and their Acquisition (ed Anderson J RI. Erlbaum. Hillsdale, NJ
1981 Mann \S C Why things are so bad for the computer-naive user. Information Sciences Institute,

March (1975).
Matz M. Towards a process model of high school algebra errors In Intelligent Tutoring Systems (eds. Sleeman

D. H. & Brown J_ S.). Academic Press, London (1981).
Mayer R E Different problem solving competencies established in learning computer programming with and

without meaningful models. Journal of Educational Psychology 67, 725-734 (1975).
Mayer R E. A psychology of learning BASIC. Communications of he AGM 22, 589- 593 (1979)
Mayer R. E. The psychology of learning computer programming by novices. Computing Surveys

13. 121 - 141 (1981)
Mayer R. E. Some conditions of meaningful learning for computer programming: Advance organizers and

subject control of frame order. Journal of Educational Psychology 68, 143 - 150 (1976).
Mayer R. E & Bayman P Psychology of calculator languages: A framework for describing differences in users'

knowledge Communications of the ACM 24. 511 - 520 (1981).
McKeithen K. B.. Reitman J. S.. Rueter H. H. & Hirtle S. C Knowledge organization arid skill differences in

computer programmers Cognitive Psychology 13. 307 - 325 (1981).
Miller L. A. Programming by non-programmers. International Journal of Man-Machine Studies 6,

237-260 (1974).
Minsk M. Form and content in computer science Communications of the ACM 17. 197 -215 (1970).
National Assessment of Educational Progress. Procedural Handbook, 1977 - 78 Mathematics

Assessment Education Commission of the States, Denver, CO (1980).
Newell A. One final word. In Problem Solving arid Education (eds. Tuma D. T. & Reif F.). Halsted Press,

New York (1980).
Newell A.. & Simon H. Human Problem Solving Prentice-Hall, Englewood Cliffs. NJ (1972).
Newman W. M & Sproull R. F. Principles of Interactive Computer Graphics, 2nd edn. McGraw-Hill,

New York (1979).
Nickerson R. S. Computer programming as a vehicle for teaching thinking skills. Thinking, The

Journal of Philosophy for Children 4. 42-48 (1982).
Nickerson R. S. Why interactive computer systems are sometimes not used by people who might benefit from

them. International journal of Man-Machine Studies 14. 469 - 481(1981).
Norman D A. (ed. Perspectives on Cognitive Science. Erlbaum. Hillsdale, NJ (1981).
Olson D. R. Culture, technology and intellect. In The Nature of Intelligence (ed. Resnick L. B.) Erlbaum.

Hillsdale, NJ (1976).
Ong W. J. Orality and Literacy. The Technologizing of the Word. Methuen, New York (1982).
Papert S. Mindstorms. Basic Books, New York (1980).
Papert S. Teaching children thinking Programmed Learning and Educational Technology 9, 245 - 255

(1972a).
Papert S. Teaching children to be mathematicians versus teaching about mathematics. International Journal for
Mathematical Education, Science and Technology 3. 249 - 262 (1972b).

Learning computer programming 167

Papers S.. Watt D diSessa A. & Weir S. An assessment and documentation of a children's computer
laboratory Final Report of the Brookline Logo Project, Brookline, MA (1979).

Pea R. D. Programming and problem solving Children s experience with Logo. Paper presented at Annual
Meetings of the American Educational Research Association, Montreal, Canada, April 1983 (Also
Tech. Rep 12. Center for Children & Technology. Bank Street College, New York. April 1983.)

Pea R. D What is planning development the development of? In New Directions in Child Development.
Children's Planning Strategies (eds. Forbes D. & Greenberg M.), Vol. 18. Jossey-Bass. San Francisco
(1982.
Pea R. D. & Hawkins, J. A microgenetic study of planning processes in a chore-scheduling task. In Blue

prints for Thinking The Development of Social and Cognitive Planning Skills (eds. Friedman S. L.,
Scholnick E. K. & Cocking R. R.), Cambridge University Press, Cambridge (1984, in press).

Pea R. D. & Kurland D. M. Logo programming and the development of planning skills (Tech. Rep. No.
16). Center for Children & Technology, Bank Street College. New York, April (l983a).

Pea R. D. & Kurland D. M. On the cognitive prerequisites of learning computer programming (Tech. Rep.
No. 18). Center for Children & Technology, Bank Street College, New York. April (1983b)

Piaget J. The Child's Conception of Time (ed. Pomerans A. J.). Ballantine, New York (l99)
Piaget J. Intellectual evolution from adolescence to adulthood. Human Development 15 I - 12

(1972)
Piaget J. & Inhelder B. The Psychology of the Child. Basic Books. New York (1969).
Polya G. How to Solve it. Doubleday-Anchor. New York (1957).
Price-Williams D., Gordon W & Ramirez M. Skill and conservation: A study of pottery-making children.

Developmental Psychology 1, 769 (1969).
Resnick L B. A new conception of mathematics and science learning. Presentation at the National

Convocation on Precollege Education in Mathematics and Science National Academy of Sciences and
National Academy of Engineering. 12- 13 May (1982).

Rich C & Shrobe H. Initial report on a Lisp programmer's apprentice. IEEE Transactions on
Software Engineering SE-4, 456 - 467 (1978).

Ross P & Howe J. Teaching mathematics through programming: Ten years on. In Computers in
Education (eds. Lewis R. & Tagg D.). North-Holland. Amsterdam (1981).

Scardamalia M. & Bereiter C The development of evaluative, diagnostic and remedial capabilities in
children's composing. In The Psychology of the Written Language (ed. Martlew M.). John Wiley,
London (1983).

Schank R Dynamic Memory. Cambridge University Press. Cambridge (1982).
Schank R. & Abelson R. P. Scripts. Plans, Goals and Understanding. Erlbaum, Hillsdale. NJ(1977i
Segal S.. Chipman J. & Glaser R (eds.) Thinking and Learning Skills: Current Research and Open

Questions. Erlbaum, Hillsdale, NJ (1984, in press.
Sheil B. A. Coping with complexity. Xerox Cognitive and Instructional Sciences Series CIS-15, April

(1981a).
Sheil B. A. Teaching procedural literacy. Proceedings of ACM Annual Conference 125 - 126 1980
Sheil B. A. Teaching procedural literacy. Proceeding of ACM Annual Conference 125 - l26 1980,
Sheingold K.. Kane J . Endreweit M. & Billings K. Study of issues related to the implementation or

computer technology in schools. Final Report, National Institute of Education (1981).
Sheppard S. B.. Curtis B., Milliman P & Love T. Modern coding practices arid programmer performance

IEEE Computer 5, 41 - 49 (1979).
Shif Z. I. Development of children in schools for mentally retarded. In.4 Handbook of Contemporary.

Soviet Psychology eds. Cole M & Maltzman I.). Basic Books, New York (1969).
Siegler R. S Information processing approaches to development, In Mussen Handbook of Child

Psychology (4th edn.) History. Theory, and Methods eds. Kessen W), Vol. 1. John Wiley, New
York (1983)

Shneiderman B Measuring computer program quality and comprehension International journal
of Man-Machine Studies 9. 465 - 478 (1977).

Shrobe H E., Waters R & Sussman G A hypothetical monologue illustrating the knowledge of underlying
program analysis ;Memo No 507). MIT Artificial Intelligence Laboratory, Cambridge. MA

168 Roy Pea and D. Midian Kurland

(1979)
Sime M E. Arblaster A T & Green T R. G Reducing programming errors in nested conditionals by prescribing a
writing procedure. International journal of Man-Machine Studies. 1l9- 126 (1977)
Simon H A Problem solving and education In Problem Solving and Education Issues in Teaching and

Research (eds. Tuma D T & Reif F Halsted) Press, New York (1980).
Simon H A. & Hayes J R The understanding process Problem isomorphs. Cognitive Psychology 8. 165- 190
1975.
Smith E. E. & Bruce B C An outline of a conceptual framework for the teaching of thinking skills Report No

4844) Prepared for National Institute of Education. Bolt Beranek & Newman Cambridge. MA (1981)
Soloway E. Bonar J & Ehrlich K Cognitive strategies and looping constructs. An empirical study

Communications of the AC.1 26, 853 - 860 (1983).
Soloway E & Ehrlich K. Tacit programming knowledge. Proceedings of the Fourth Annual Conference

Of the Cognitive Science Society. Ann Arbor. Michigan. 4-6 August (1982).
So1owa E., Ehrlich K. Bonar J & Greenspan J What do novices know about programming? In Directions in

Human - Computer Interactions (eds. Shneiderman B. & Badre A.). Ablex. Hillsdale. NJ (1982).
Soloway E. Lochhead J & Clement J Does computer programming enhance problem solving

ability' Some positive evidence on algebra word problems In Computer Literacy Issue, and Directions for
1985 feds Seidel P. Anderson R & Hunter B.). Academic Press, New York (1982).

Soloway E., Rubin E.. Woolf B . BonarJ & Johnson W. L. MENO-II An Al-based programming tutor Yale
University Department of Computer Science. Research Report #258, December (1982)

Spiro P. J.. Bruce B C & Brewer W. F (eds.). Theoretical Issues in Reading Comprehension
Erlbaum. Hillsdale. NJ (1980)

Statz J Problem solving and Logo. Final report of Syracuse University Logo Project. Syracuse University. New
York (1973).

Sternberg R. J & Rifkin B The development of analogical reasoning processes. journal o'
Experimental Child Psychology 27, 195 - 232 (1979).

Thayer R H.. Pyster A. B. & Wood R. C Major issues in software engineering project management IEEE
Transactions on Software Engineering SE-7. 333-342 (1981).

Van Lehn K. Bugs are not enough: Empirical studies of bugs, impasses and repairs in procedural skills. Xerox
Cognitive and Instructional Sciences Series CIS- 111. March (1981).

Vygotsky L. S Mind in Society eds. Cole M., John-Steiner V.. Scribner S. & Souberman E Harvard University
Press. Cambridge. MA (1978).

Waters R. C. The programmer's apprentice: Knowledge based program editing IEEE Trans-
actions on Software Engineering SE-8 (1) (1982).

Watt D Logo in the schools. Byte 7. 116- 134 (1982).
Weir S. Logo as an information prosthetic for the handicapped (Working paper No. WP-9). MIT. Division for

Studies and Research in Education, Cambridge. MA, May (1981.
Weir S. & Watt D Logo A computer environment for learning-disabled students The Computer

Teacher 8. 11-17(1981).
Werner H. The concept of development from a comparative and organismic point of view. In The

Concept of Development (ed. Harris D. P..). University of Minnesota Press, Minnesota 1957)
Werner H. Process and achievement. Harvard Educational Review 7, 353 - 368 (1937).
Young R. M. The machine inside the machine: Users' models of pocket calculators, international

Journal of Man-Machine Studies 15. 51 -85 (1981).
Youngs E. A. Human errors in programming International Journal of Mon-Machine Studies 6.

361 -376(1974).

