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Abstract—This paper reports on the architecture and 

performance of a creative artificially-intuitive and reasoning 

agent (CAIRA) as an improviser and conductor for improvised 

avant-garde music. The agent’s listening skills are based on a 

music recognition system that simulates the human auditory 

periphery to perform an Auditory Scene Analysis (ASA). Its 

simulation of cognitive processes includes a cognitive calculus for 

reasoning and decision-making using logic based-reasoning. The 

agent is evaluated in live sessions with music ensembles. 
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I.  INTRODUCTION  

Numerous attempts have been made to design machine 
improvisation/composition algorithms to generate music 
material in the context of various musical styles [Cop87, Fri91, 
Wid92, Jac96]. While Oliveros’ Expanded Instrument System 
(EIS) acts on audio signals [Oli91, Gam98], in most cases these 
algorithms use a symbolic language, such as the Musical 
Instrument Digital Interface (MIDI) format, to code various 
music parameters. For example, Lewis' Voyager system 
[Lew00] and Pachet's Continuator [Pac04] work with MIDI 
data in order to interact with an individual performer. The 
system transforms and enhances the material of the human 
performer by generating new material from the received MIDI 
code, which may be derived from an acoustical sound source 
using an audio-to-MIDI converter (Typically these systems fail 
if more than one musical instrument is included in the acoustic 
signal.). In the case of the Continuator, a learning algorithm 
based on a Hidden Markov Model (HMM) helps the system to 
copy the musical style of the human performer.  

Following these traditions, this paper describes an 
intelligent agent that was developed to perform music 
improvisations in the context of free music. In order to cope 
with free music, the agent simulates human listening using 
standard techniques of Computational Auditory Scene Analysis 
(CASA) including pitch perception, tracking of rhythmical 
structures, and timbre and texture recognition (see Fig. 1). It 
uses a Hidden Markov Model (HMM) to recognize musical 
gestures and Evolutionary Algorithms to create new material. 
Recently, the authors have begun to integrate a logic-based 
reasoning system into the overall architecture for a hypothesis-
driven approach (see top-down processes in Fig. 1). The 

current musical output module of the system consists of 
presenting audio material that is a processed version of input 
sound which the agent picks up during a given session, or from 
audio material that has been presented to the agent in a prior 
live session. The material is analyzed using the HMM machine 
listening tools and CASA modules, restructured through the 
evolutionary algorithms and then presented in the context of 
what is being played live by the other musicians. Alternatively, 
the agent can also conduct a small ensemble using a graphic 
score and instructions that are updated live. In the following 
three sections, the basic architecture of CAIRA will be 
described, followed by a concrete performance example in 
Section V. 

II. MICROPHONE-AIDED COMPUTATIONAL AUDITORY 

SCENE ANALYSIS (MACASA)  

Stemming from the seminal work of Albert Bregman on the 

perceptual organization and grouping of sounds [Bre90], a 

body of work has arisen whose primary goal is the 

computational modeling of the mechanisms by which humans 

parse audio streams, grouping percepts into identifiable sound 

objects.  This field of Computational Auditory Scene Analysis 

(CASA) [Ell90, Ros98] shares similar goals with the analysis 

stage of our project for several reasons. Primary among these 

is that contemporary improvised music often does not 

structure itself by classical paradigms of musical structure – 

key, meter, melodic progressions, etc. – but rather by working 

on the level of sound in a more direct, low-level (from a signal 

processing point of view) and visceral way. 

 

One of the unsolved challenges in CASA is the robust 

separation of auditory streams from a complex sound mixture. 

Unfortunately, sound mixtures of music performances are 

among the most complex cases, and the typically long 

reverberation times in concert venues are an additional 

obstacle for robust CASA performance.   To circumvent this 

problem, we separate the individual instruments electro-

acoustically using closely positioned microphones for each 

participating musician. Additional room microphones can be 

utilized to automatically calibrate the individual microphone 

signal levels [e.g., see Bra11b], which is important when the 

inter-musician relationships need to be determined from these 

data.  



 

 

Figure 1.  Schematic of the creative artificially-intuitive and reasoning agent CAIRA 

 

III. GESTALT-BASED IMPROVISATION MODEL BASED ON 

INTUITIVE LISTENING  

The artificially-intuitive listening and music performance 
processes are simulated using a Hidden Markov Model (HMM) 
for sonic gesture recognition and Genetic Algorithms (GA) for 
the creation of new sonic material [Nor09, Nor10]. In the first 
step of this stage, the system continually extracts spectral and 
temporal sound features. At the same time, onsets and offsets 
are tracked on a filtered version of the signal, which act as 
discrete cues for the system to begin recognizing sonic 
gestures. When such a cue is received, a set of parallel Hidden 
Markov Model (HMM) based gesture recognizers follow the 
audio, with the specific number of these being chosen as a 
product of needed resolution as well as processing power. The 
recognition continually provides a vector of probabilities 
relative to a “dictionary” of reference gestures. Processing on 
this vector extracts features related to maximum likelihood and 
confidence, and this information drives the fitness, crossover, 
mutation and evolution rate of a GA process acting on the 
parameter output space [Van09]. 

IV. LOGIC-BASED REASONING DRIVEN WORLD MODEL 

A. Overview 

In order to better understand the relationship between bottom-

up and top-down mechanisms of creativity, a knowledge-

based top-down model complements the bottom-up stages that 

were described in the previous two sections. CAIRA’s 

knowledge-based system is described using first-order logic 

notation (for a detailed description of CAIRA’s ontology see 

[Bra11]). For example CAIRA knows that every musician has 

an associated time-varying dynamic level in seven ascending 

values from tacit to ff. The agent also possesses some 

fundamental knowledge of music structure recognition based 

on jazz music practice. It knows what a solo is and 

understands that musicians take turns in playing solos, while 

being accompanied by the remaining ensemble. The agent also 

has a set of beliefs. For example it could be instructed to 

believe that every soloist should perform exactly one solo per 

piece. 

One of the key analysis parameters for CAIRA is the 

estimation of the tension arc, which describes the current 

perceived tension of an improvisation. In this context, the term 

‘arc’ is derived from common practice of gradually increasing 

the tension until the climax of a performance part is reached 

and then gradually decreasing tension to end it. Thus, tension 

often has the shape of an arc over time, but it can also have 

different time courses. It is noteworthy that we are not 

focusing here on tonal tension curves that are typically only a 

few bars long (i.e. demonstrating low tension whenever the 

tonal structure is resolved and the tonic appears). Instead, we 

are interested in longer structures, describing a parameter that 

is also related to Emotional Force [McA02].   

Using the individual microphone signals, the agent tracks 

the running loudness of each musical instrument using the 

Dynamic Loudness Model of [Cha02]. The Dynamic 

Loudness Model is based on a fairly complex simulation of the 

auditory periphery including the simulation of auditory filters 

and masking effects. In addition, the psychoacoustic 

parameters of roughness and sharpness are calculated 

according to [Dan97] and [Zwi99]. In the current 

implementation, CAIRA estimates tension arcs for each 

musician from simulated psychophysical parameters. Based on 

these perceptual parameters and through its logic capabilities, 



the system recognizes different configurations for various 

patterns, e.g., it realizes that one of the musicians is 

performing an accompanied solo, by noticing that the 

performer is louder and has a denser texture than the 

remaining performers. The system can also notice that the 

tension arc is reaching a climax when all musicians perform 

denser ensemble textures. CAIRA takes action by either 

adapting her music performance to the analysis results, or by 

presenting a dynamic visual score as described in more detail 

in the next section. CAIRA can, for example, suggest that a 

performer should end his or her solo, because it is becoming 

too long or it can encourage another musician to take more 

initiative. It can guide endings and help an ensemble to fuse its 

sounds together. 

B. Tension Arc Calculation 

In a previous study, we decided to calculate the tension arcs T 

from a combination of loudness L and roughness data R 

[Bra11a]: 

 

T=L
4
+a·R

3
, 

 

with an adjusting factor a. In this paper, we also suggested to 

include information rate (e.g., as defined by [Dub03, Dub06]) 

as an additional parameter for the tension arc calculation. A 

real-time capable solution was developed measuring the rate 

and range of notes per 2-second time interval. To achieve this, 

pitch is measured using the YIN algorithm and converted to 

MIDI note numbers. Next, the number of notes is counted 

within a 2-second interval discounting the repetition of 

identical notes. The standard deviation of the note sequence is 

then determined from the list of midi note numbers. Finally, 

the information rate is determined from the product of number 

of notes and standard deviation of MIDI note numbers. 

Practically, we measured values between 0 and 100.  

In addition, we measured the number of note onsets, by 

applying an envelope follower, calculating the rate of change 

of its output signal and then counting the incidents above a 

given positive threshold. A refractory period of 20 ms was 

applied, before the next onset is counted to avoid counting the 

same onsets multiple times. The tension curve is calculated 

using the following equation: 

 

T=L+0.5· ((1−b)·R+b·I+O)), 

 

with I the information rate, and O the onset rate. Note that all 

parameters: L, R, I, O are normalized between 0 and 1 and the 

exponential relationships between the input parameters and T 

are also factored into these variables. The parameter b is the 

quality factor from the YIN pitch algorithm. A value of one 

indicates a very tonal signal with a strong strength of pitch, 

while a value of zero indicates a noisy signal without defined 

pitch. The parameter is used to trade off roughness and 

information rate between tonal and noise-like signals.  

 

 
Figure 2.  Schematic communication scheme for a free music performance. 

Each musician has to establish individual communication channels to all other 

musicians and also observe oneself. Dashed lines symbolize MaCASA 

enabled machine listening. 

C. CAIRA’s Self-Observation 

Based on the tension arc data, CAIRA assesses the current state 

of the improvisatory ensemble addressing questions of who is 

playing a solo or whether it is likely that the improvisation 

will come to an end soon. For this purpose, the agent analyses 

the relationships between the tension arcs of each musician, 

including the tension arc measured from CAIRA’S own acoustic 

performance (see Figure 2). The robust measurement of 

individual tension arcs is possible, because each musician is 

captured with a separate microphone. 

 

 
Figure 3.  Video Still from Configured Night 



V. CONFIGURED NIGHT 

An example of the visual score produced by CAIRA was 
adapted from an audio-visual work titled Configured Night. 
The core idea of this piece is based on video footage of night 
scenery recorded from train rides. The material serves both as 
visual art work and visual score. A catalog of clips was created 
for the piece. Each clip starts and ends with a dark sequence, 
which regularly occurs when filming from a train at night, so 
that the clips can be arranged seamlessly in any order. For the 
piece, the various clips are categorized according to visual 
density, rate of change, object sizes, among others features. 
Figure 3 shows a few stills from the footage. The top-left figure 
is a very sparse scene from an Amtrak train ride along the 
Hudson river, the top-center still is taken from a train ride in 
Germany with camera focusing on the raindrop-sparkled 
window. The right image is taken from a train ride in Sendai, 
and characterized by numerous lights in very symmetrical 
arrangement. The footage can also be used to blend between 
different levels of concrete vs. abstract. The piece starts in a 
randomly selected train station and ends in another one in a 
different continent.  

In our concrete example, CAIRA performs with Braasch 
(soprano saxophone) and Van Nort (GREIS [Nor10]) using 
sound material from Oliveros (Roland V-Accordion). Prior to 
the performance, CAIRA’S HMM module was trained on 
Oliveros’ performance with the trio Triple Point (Braasch, 
Oliveros, Van Nort). For this purpose, acoustically isolated 
accordion tracks from a 14-minute clip of a trio session were 
used to feed the machine learning algorithm. During the 
performance, this material is transformed and played back 
based on a dialog with the two live musicians. 

Visual leitmotivs exist for each ensemble scenario (e.g., 
improvisation start, low tension group performance, high-
tension group performance, CAIRA’S solo, laptop solo, 
saxophone solo, improvisation end). Within the high-tension 
group performance mode, CAIRA also arranges rapid moving 
video fragments rhythmically to the music performance. While 
the score is not binding for the live musicians in this piece, it 
gives insight into the operation of CAIRA, and also provides 
useful feedback to understand the “intentions” and internal 
state of the intelligent agent. 

ACKNOWLEDGMENT  

This material is based upon work supported by the National 
Science Foundation under Grant No. 1002851. The real-time 
implementation of the CAIRA system was written in Max/MSP 
utilizing various custom externals and abstractions as well as 
the FTM, Gabor and MnM packages from IRCAM, externals 
from CNMAT and Tristan Jehan’s toolboxes (also using their 
loudness and roughness algorithms for a single-machine, stand-
alone version of CAIRA).  

REFERENCES 

[Bra11a] Braasch, J. , Bringsjord, S., Kuebler, C., Oliveros, P., Parks, 

A., Van Nort, D.  (2011) Caira – a Creative Artificially-Intuitive 

and Reasoning Agent as conductor of telematic music 

improvisations, Proc. 131th Audio Engineering Society 

Convention, Oct. 20-23, 2011, New York, NY, Paper Number 

8546. 

[Bra11b] Braasch, J., Peters, N., Van Nort, D., Oliveros, P., Chafe, C.  

(2011) A Spatial Display for Telematic Music Performances, in: 

Principles and Applications of Spatial Hearing: Proceedings of 

the First International Workshop on IWPASH (Y. Suzuki, D. 

Brungart, Y. Iwaya, K. Iida, D. Cabrera, H. Kato (eds.) World 

Scientific Pub Co Inc, ISBN: 9814313874, 436–451. 

[Cha02] Chalupper, J., Fastl, H. (2002) Dynamic loudness model 

(DLM) for normal and hearing-impaired listeners. Acta Acustica 

united with Acustica 88, 378–386. 

[Cop87] Cope, D. (1987). An expert system for computer-assisted 

composition, Computer Music Journal 11(4), 30–46. 

[Dub03] Dubnov, S., Non-gaussian source-filter and independent 

components generalizations of spectral flatness measure. In 

Proceedings of the International Conference on Independent 

Components Analysis (ICA2003), 143–148, Porto, Portugal, 

2003. 

[Dub06] Dubnov, S., McAdams, S., Reynolds, R., Structural and 

affective aspects of music from statistical audio signal analysis. 

Journal of the American Society for Information Science and 

Technology, 57(11):1526–1536, 2006. 

[Ell96] Ellis, D.P.W. (1996) Prediction-driven computational 

auditory scene analysis, Doctoral Dissertation, Massachusetts 

Institute of Technology. 

[Fri91] Friberg, A. (1991). Generative rules for music performance: 

A formal description of a rule system, Computer Music Journal 

15(2), 56–71. 

[Gam98] Gamper, D., Oliveros, P., “A Performer-Controlled Live 

Sound- Processing System: New Developments and 

Implementations of the Expanded Instrument System,” Leonardo 

Music Journal, vol. 8, pp.33–38, 1998. 

[Jac96] Jacob, B. (1996), Algorithmic composition as a model of 

creativity, Organised Sound 1(3), 157–165. 

[Lew00] Lewis, G.E. (2000) Too Many Notes: Computers, 

Complexity and Culture in Voyager, Leonardo Music Journal 10, 

33–39. 

[Rus02] Russell, S.,  Norvig, P. (2002) Artificial Intelligence: A 

Modern Approach. Prentice Hall, Upper Saddle River, NJ. 

[Nor09] D. Van Nort, J. Braasch, P. Oliveros (2009) A system for 

musical improvisation combining sonic gesture recognition and 

genetic algorithms, in: Proceedings of the SMC 2009-6th Sound 

and Music Computing Conference, 23-25 July 2009, Porto, 

Portugal, 131–136. 

[Nor10] Van Nort, D., Oliveros, P., Braasch, J. (2010) Developing 

Systems for Improvisation based on Listening, in Proc. of the 

2010 International Computer Music Conference (ICMC 2010), 

New York, NY, June 1–5, 2010. 

[Oli91] Oliveros, P., Panaiotis, “Expanded instrument system (EIS),” 

inProc. of the 1991 International Computer Music Conference 

(ICMC91), Montreal, QC, Canada, 1991, pp. 404–407. 

[Pac04] Pachet, F. (2004) Beyond the Cybernetic Jam Fantasy: The 

Continuator, IEEE Computer Graphics and Applications 24(1), 

31–35. 

[Wid94] Widmer, G. (1994). The synergy of music theory and AI: 

Learning multi-level expressive interpretation, Technical Report 

Technical Report OEFAI-94-06, Austrian Research Institute for 

Artificial Intelligence. 


